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Abstract: In this paper, we develop a suite of motion planning strategies suitable for large-
scale sensor networks. These solve the problem of reconfiguring the network to a new shape
while minimizing either the total distance traveled by the nodes or the maximum distance trav-
eled by any node. Three network paradigms are investigated:centralized, computationally dis-
tributed, and decentralized. For the centralized case, optimal solutions are obtained inO(m)
time in practice using a logarithmic-barrier method. Key tothis complexity is transforming
the Karush-Kuhn-Tucker (KKT) matrix associated with the Newton step sub-problem into a
mono-banded system solvable inO(m) time. These results are then extended to a distributed
approach that allows the computation to be evenly partitioned across them nodes in exchange
for O(m) messages in the overlay network. Finally, we offer a decentralized, hierarchical ap-
proach whereby follower nodes are able to solve for their objective positions inO(1) time
from observing the headings of a small number (2-4) of leadernodes. This is akin to biolog-
ical systems (e.g.schools of fish, flocks of birds,etc.) capable of complex formation changes
using only local sensor feedback. We expect these results will prove useful in extending the
mission lives of large-scale mobile sensor networks.

1 Introduction

Consider the initial deployment of a wireless sensor network (WSN). Ideally, the
WSN is fully connected with a topology to facilitate coverage, sensing, localization,
and data routing. Unfortunately, since deployment methodscan vary from aerial to
manual, the initial configuration could be far from ideal. Asa result, the WSN may
be congested, disconnected, and incapable of localizing itself in the environment.
Node failures in established networks could have similar effects. Such limitations in
static networks have lead to an increased research interestinto improving network
efficiency via nodes that support at least limited mobility [2].

Also of fundamental importance to WSN research is resource management, and
(perhaps most importantly) power management. Energy consumption is the most
limiting factor in the use of wireless sensor networks, as service life is limited by
onboard battery capacity. This constraint has driven research into power sensitive
routing protocols, sleeping protocols, and even network architectures for minimizing
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data traffic [1, 13]. It would seem only natural to develop motion planning strategies
with similar performance objectives.

In this vein, we propose a set ofmotion planning strategiesthat allow a mobile
network to reconfigure to a new geometry while minimizing thetotal distance the
nodes must travel, or the maximum distance that any node musttravel. We believe
a suite of strategies is critical due to the proliferation ofnon-standard sensor net-
work architectures which are often implementation specific. As such, we provide
centralized, computationally distributed, and decentralized approaches suitable for
use with large-scale sensor network architectures. Each iscomputationally efficient,
and without onerous communication overhead.

2 Related Work

Changes to the environment, mission objectives, and node failures are all factors
that can contribute to need for reconfiguring a sensor network. However, topology
changes can also be driven by performance objectives. For example, Corteset al
applied optimization based techniques to motion planning for improving network
coverage [7]. Similarly, Zhang and Sukhatme investigated using motion to control
node density [20]. The work of Hidakaet al investigated deployment strategies for
optimizing localization performance [16], while the work of Butler and Rus was
motivated by event monitoring using constrained resources[6]. Also worth noting is
work in the areas of formation control [21], conflict resolution [17], and cooperative
control [3]. A recent survey/tutorial outlining additional relevant work within each
of these areas can be found in [11].

In contrast to these efforts, the focus of our work is efficient motion plan-
ning strategies suitable for large-scale networks. Given initial and objective network
geometries, we determine how to optimally reposition each node in order to achieve
the objective configuration while minimizing the distancesthat the nodes must travel.
The objective positions can then be fed to appropriate controllers to drive the nodes
to their desired destinations. When servo/actuator costs dominate the power budget,
such approaches can dramatically improve the network mission life. We also em-
phasize applicability to large-scale systems. Our methodsscale well in terms of both
computational and message complexity to ensure that advantages gained through ef-
ficient motion planning are not compromised by excessive computation or routing
requirements. Finally, we provide centralized, computationally distributed, and de-
centralized models to support the diverse array of WSN architectures.

3 The Motion Planning Problem

In developing our motion planning strategies, we consider the problem of having
a multi-agent team transition to a new shape formation whileminimizing either the
total distance or maximum distance metric. For our purposes, we adopt the traditional
definition of shape that is often employed in statistical shape analysis [10]:
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Definition 1. The shape of a formation is the geometrical information thatremains
when location, scale, and rotational effects are removed.

Thus, formation shape is invariant under the Euclidean similarity transformations of
translation, rotation and scale [10].

For brevity, in this paper we only consider operations inSE(2) and refer
the reader to [9] for details on obtaining optimal solutionsin R

3. Letting Q =
[q1, . . . , qm]T ∈ R

m×2 denote the concatenated coordinates of the objective shape
formation with respect to some world frameW and lettingS = [s1, . . . , sm]

T ∈
R
m×2 denote an instance (or anicon) of our objective shape with respect to some lo-

cal frameF , the shape of a robot formation can be represented as the set of equality
constraints:

qxi − qx1 = α (sxi cos θ − syi sin θ)
q
y
i − q

y
1 = α (sxi sin θ + s

y
i cos θ)

(1)

for i = 2, . . . ,m. In this formulation,α ∈ R+ andθ respectively denote the scale
and orientation of the formation, while the(x, y) superscripts denote the specific
Euclidean coordinate.

Without loss of generality, we can define the objective formation scale and ori-
entation respectively as:

α =
‖ q2 − q1 ‖
‖ s2 − s1 ‖

=
‖ q2 − q1 ‖
‖ s2 ‖

θ = arctan
q
y
2 − qy1
qx2 − qx1

(2)

The former equalities hold as we chooses1
△
= OF . From the latter, we obtain:

cos θ =
qx2 − qx1
‖ q2 − q1 ‖

sin θ =
q
y
2 − qy1

‖ q2 − q1 ‖
(3)

Given these definitions, the non-convex constraints in (1) can be restated as the fol-
lowing set of linear equalities:

‖ s2 ‖ (qxi − qx1 )− (sxi , s
y
i )
T (q2 − q1) = 0, i = 3, . . . ,m

‖ s2 ‖ (qyi − q
y
1 )− (syi , s

x
i )
T (q2 − q1) = 0, i = 3, . . . ,m

(4)

These constraints are now convex, and they define the equivalence class of the
full set of similarity transformations of the formation. Thus, if an objective shape
Q and an iconS satisfy these constraints, the two shapes are equivalent under the
Euclidean similarity transformations of translation, rotation and scaling. So, given
an initial formation positionP = [p1, . . . , pm]

T ∈ R
m×2 , and an objective shape

iconS, the problem becomes finding the set of objective positionsQ ∼ S such that

1. max ‖ qi − pi ‖ is minimized fori = 1, . . . ,m OR

2.
k
∑

i=1

‖ qi − pi ‖ is minimized.

In other words, if the network were given an objective iconS, it must determine the
objective positions for each node that minimizes the chosenmetric, while ensuring
the final shape formationQ ⊂W is equivalent toS.
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As the constraints are linear inQ, the problems can be modeled as the respective
second-order cone programs (SOCPs)

min
q,t1

t1 min
q,t

m
∑

i=1

ti

s.t. ‖ qi − pi ‖2≤ t1 s.t. ‖ qi − pi ‖2≤ ti
Aq = 0 Aq = 0

(5)

for i = 1, . . . ,m. Since the SOCPs are convex, a local minimum corresponds to a
global minimum. This allows optimal solutions to be obtained through a variety of
methods such as descent techniques or (more efficiently) by interior point methods
(IPMs). While primal-dual IPMs represent perhaps the most efficient algorithms, we
employ a simpler barrier IPM. It provides good computational complexity in prac-
tice, and as we shall see lends itself to a computationally distributed implementation.

Finally, in the interest of brevity, the results presented in this paper largely focus
on themini-maxdistance problem as defined in Equation 5 (left). It should benoted
that similar results have been obtained for the total distance variation [9].

4 A Centralized Approach

Centralized approaches are appropriate for hierarchical network architectures such as
the TENET [13]. For the motion planning problem, “master” nodes acting as cluster-
heads would calculate the objective positions for the cluster and communicate these
to supporting nodes in the network. While simple in design, the hierarchy requires
that algorithms scale well computationally with the size ofthe network.

To address this, we solve the motion planning problem by adapting the loga-
rithmic penalty-barrier approach outlined in [4]. Like other IPMs, the complexity
is largely defined by solving a linear system of equations. Inthis case, Equality-
constrained Newton’s method (ENM) is used for internal minimization and the linear
system is in KKT form. As solving this system provides a solution to the Newton step
sub-problem, we accordingly refer to it as the “Newton KKT system.” We show that
by reformulating the SOCP, we can band the coefficient matrixto solve the system in
O(m) time via algorithms that exploit knowledge of matrix bandwidth. Furthermore,
we show empirically that the total number of iterations required to reduce the duality
gap to a desired tolerance isO(1). The result is a simple IPM that in practice solves
the motion planning (and similar) problems inO(m) time.

4.1 Reformulating the Motion Planning Problem

The originalmini-maxmotion planning problem can be restated in a relaxed form
suitable for solving via the barrier approach. Conversion requires augmenting the
objective function given in (5) with log-barrier terms corresponding to the problem’s
conic constraints as follows:
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min
q,t1

τkt1 −
m
∑

i=1

log (t21 − (qi − pi)T (qi − pi))
s. t. Aq = 0

(6)

whereτk is the inverse log-barrier scaler for thekth iteration. Essentially, solving
our SOCPs reduces to solving a sequence of convex optimization problems of this
form, where after each iterationτk+1 is chosen such thatτk+1 > τk.

4.2 Banding the Newton KKT System

During each iteration of the log-barrier approach, we aim tominimize the second-
order Taylor approximation of our objective function as a function of the Newton
step,δx, subject toAδx = 0. As a result, obtainingδx is equivalent to analytically
solving the KKT conditions associated with this equality-constrained sub-problem.
In other words, we must solve the following linear system of equations [4]:

[

H AT

A 0

] [

δx

w

]

=

[

−g
0

]

(7)

whereH andg respectively denote the evaluated Hessian and gradient of the objec-
tive function given in (6) atx, w is the corresponding dual variable forδx, andA
is as previously defined. Solving (7) is the bottleneck of thealgorithm; however, we
will show that it can be solved very efficiently (i.e. inO(m) time) by simply reposing
the problem given in (6).

Noting that the coefficient matrix of (7) is symmetric indefinite, we employ
Gaussian elimination with non-symmetric partial pivoting. The performance of this
technique suffers significantly when the linear system in question features dense rows
and/or columns due to fill-in [19]. In particular, the algorithm could yield a worst-
case performance ofO(m3) when solving an instance of (7) associated with the
nominal problem formulation given in (6). To illustrate this point, we include Fig-
ure 1 (left) which shows the corresponding non-zero sparsity structure (a.k.a. the
dot-plot) of the Newton KKT system. As the rows of system are permuted during
reduction, the dense rows and columns respectively locatedin the upper-right and
lower-left quadrants of (7) could introduce a solid sub-block of orderm×m, which
itself would requireO(m3) basic operations to reduce. Such a workload is highly
impractical, especially when considering large-scale configurations that inherently
feature 1000’s of decision variables.

To address this issue, we present the following auxiliary formulation of (6) that
facilitates transforming the Newton KKT system into a mono-banded form:

min
q,t

τk

m

m
∑

i=1

ti −
m
∑

i=1

log (t2i − (qi − pi)T (qi − pi))
s. t. Aq = 0

ti+1 = ti, i = 1, . . . ,m− 1
d2i+1 = d2i−1, i = 1, . . . ,m− 3
d2(i+1) = d2i, i = 1, . . . ,m− 3
di = qi, i ∈ {1, 2}

(8)
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Fig. 1. (left) The nominal Newton KKT system sparsity structure forthe mini-maxmotion
planning problem inSE(2). (center) Augmented Newton KKT system sparsity structure.
(right) The banded system with lower and upper bandwidths of8.

Notice that the objective has changed from (6); however, we see that both forms are
equivalent since:

τk

m

m
∑

i=1

ti =
τk

m

m
∑

i=1

t1 =
(τk

m

)

mt1 = τkt1 (9)

where the first equality holds due to the equality constraints placed onti.
Given this augmented formulation, our claim is that the system can be made

mono-banded. To show this, we begin by defining the nominal solution vector for
the coefficient structure of (7) as follows:

[

δηT1 , δη
T
2 , δκ

T
1 , . . . , δκ

T
(m−2), µ

T
]T

(10)

δηi =

[

δqi
δti

]

δκi =





δd2(i−1)+1

δd2(i−1)+2

δη(i+2)



 µ =







w1

...
w7m−13







where theδ variables correspond to the primal Newton step components associated
with each of the respective system variables.

Given the new objective, (9), and assuming the shape problem’s solution vector
permutation corresponds with (10), the Hessian for our problem is now

H =













ψ1 . . . . . . 0
... ψ2

...
...

. . .
...

0 . . . . . . ψm













ψi = ▽2φ(ui, ti), i ∈ {1, 2}

ψi =

[

04×4 04×3

03×4 ▽2φ(ui, ti)

]

, i ∈ {3, . . . ,m}
(11)

where▽2φ(ui, ti) is defined as in [14] withui = qi − pi. Notice that this Hessian
is block-diagonal and separable. This differs from the its nominal form, which fea-
tures a dense row and column corresponding to the variable,t1. This is evident by



Efficient Motion Planning Strategies for Large-scale Sensor Networks 7

observing the upper-left quadrant (defined byH) of the KKT matrix given in Figure
1 (left).

Similarly, we can eliminate the dense columns and rows inA (andAT ) by intro-
ducing2(m−2) auxiliarydj variables along with their associated4(m−3) equality
constraints. Doing so allows us to rewrite (4) as:

‖ s2 ‖ (qxi − dxj )− (sxi , s
y
i )
T (dj+1 − dj) = 0

‖ s2 ‖ (qyi − d
y
j )− (syi , s

x
i )
T (dj+1 − dj) = 0

(12)

for i = 3, . . . ,m andj = 2(i− 3)+1. By reformulating the linear shape constraints
in this fashion, we are now able to constructA as apseudo-bandedsystem. We say
pseudo-banded, because the matrix is non-square and exhibits a band-like structure.

To show this, we begin by stating the constraint/row permutation that yieldsA in
pseudo-bandedform. We define the constraints associated withq1 andq2 as:

̺1 , qx1 = dx1
̺2 , q

y
1 = d

y
1

̺3 , t1 = t2

̺4 , qx2 = dx2
̺5 , q

y
2 = d

y
2

(13)

Similarly, for3 ≤ i ≤ (m− 1), we define the constraints associated withqi as:

ϕi1 , ‖ s2 ‖ (qxi − dxj ) = (sxi , s
y
i )
T (dj+1 − dj)

ϕi2 , ‖ s2 ‖ (qyi − d
y
j ) = (syi , s

x
i )
T (dj+1 − dj)

ϕi3 , ti = ti−1

ϕi4 , dxj+2 = dxj
ϕi5 , d

y
j+2 = d

y
j

ϕi6 , dxj+3 = dxj+1

ϕi7 , d
y
j+3 = d

y
j+1

(14)

wherej is as previously defined.
With qm, we associate the remaining three constraints:

ϕm1
, ‖ s2 ‖ (qxm − dxj ) = (sxm, s

y
m)T (dj+1 − dj)

ϕm2
, ‖ s2 ‖ (qym − dyj ) = (sym, s

x
m)T (dj+1 − dj)

ϕm3
, tm = tm−1

(15)

wherej is as previously stated withi = m.
Given these definitions, we provide the following row permutation forA, which

yields thepseudo-bandedform that appears in the lower-left (and upper-right) quad-
rant of Figure 1 (center):

[

ϑT ,κT1 , . . . ,κ
T
(m−1), ς

T
]T

(16)

ϑ =











̺1

̺2

...
̺5











κi =











ϕ(i+2)1

ϕ(i+2)2
...

ϕ(i+2)7











ς =





ϕm1

ϕm2

ϕm3





Notice that all of the primal constraints defined in (8) have been included.
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Given the definitions ofA andH , the mono-banded form of (7) can now be con-
structed. Symmetrically applying the permutation that yields the following Newton
KKT system solution vector ordering:

[

λT , ξT1 , . . . , ξ
T
(m−3), χ

T
]T

(17)

λ =























δq1
δt1
w1

...
w5

δq2
δt2























ξi =























δd2(i−1)+1

δd2(i−1)+2

w6+7(i−1)

...
w12+7(i−1)

δq(i+2)

δt(i+2)























χ =





















δd2m−5

δd2m−4

w7m−15

w7m−14

w7m−13

δqm
δtm





















produces a mono-banded coefficient structure having a totalbandwidth of 17. Simply
using the standard Reverse Cuthill-McKee (RCM) reorderingalgorithm [8] would
yield a bandwidth 47% larger than that obtained with our approach.

In Figure 1 (center), we show the “augmented” Newton KKT system constructed
from the Hessian given by (11) and the linear constraint set given in (8). The latter is
permuted according to (16). Taking the coefficient structure of (7) in this form and
symmetrically permuting its rows and columns according to (17) yields the mono-
banded system appearing in Figure 1 (right). The system corresponds to a team of
25 agents dispersed inSE(2). It can now be solved inO(m) using a band-diagonal
LU -based solver [18].

4.3 Total Complexity

Assuming a fixed duality gap reduction, the iteration complexity of the barrier ap-
proach grows asO(

√
m) [4]. Noting that the per-iteration complexity is defined by

solving the mono-banded Newton KKT system as well as computing banded matrix-
vector products, the total number of basic operations required to achieve optimality
grows only asO(m1.5). The generality of this result should not go overlooked as the
bound applies to any SOCP that yields a mono-banded Newton KKT system. This
includes regulated cases of the motion planning problem inR

3 [9].

4.4 Performance in Practice

To gauge the performance of the framework in practice, we assumed both a fixed du-
ality gap reduction and barrier parameterµ as suggested in [4]. A total of 5,000 ran-
dom instances of the motion planning problem were solved using an implementation
of the barrier algorithm. The objective was to minimize the total distance traveled by
the team. Values ofmwere considered between 10 and 1000 at intervals of 10, where
m denotes configuration size. Our implementation was validated by comparing ob-
tained solutions against those of the MOSEK industrial solver [15]. All problems
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Fig. 2. (left) The mean number of Newton iterations required to solve the motion planning
problem (total distance metric) as a function of configuration size,m. For m ' 170 the
number of iterations appears constant using the log-barrier approach. Error bars signify a
single standard deviation. (right) The mean CPU-utilization time required to solve the motion
planning problem using the MOSEK solver. The trend is strongly linear, withr

2 = 0.9869.

were solved using a standard desktop PC having a 3.0 GHz Pentium 4 processor and
2.0 GB of RAM.

Figure 2 (left) shows the results of these trials. Each data point corresponds to the
mean of 50 samples with the error bars corresponding to a single standard deviation.
The trend indicates that the total number of Newton iterations remains constant (for
m ' 170). This result in tandem with the linear per-iteration complexity established
earlier shows that in practice the motion planning problem is solvable inO(m) time.

These results are associated with the simple barrier methodoutlined in [4]; how-
ever, it should be noted that empirical results show that similar performance can be
achieved using more sophisticated solvers. Figure 2 (right) shows the CPU time re-
quired by the MOSEK industrial solver for configuration sizes having up to 2000
nodes. Each point corresponds to the mean obtained from solving 50 randomly gen-
erated motion planning SOCPs (total distance metric). Thisdata shows that for a
configuration of 2000 nodes inSE(2) an optimal solution can be obtained in only
0.28 seconds. Furthermore, the CPU time clearly scales asO(m) with linear regres-
sion analysis revealingr2 = 0.9869, wherer is the associated correlation coefficient.
Results obtained using the solver also indicate that an optimal solution can typically
be found in less than 12 iterations - regardless of configuration size.

5 A Computationally Distributed Approach

Our centralized solution features both a band-diagonal linear system as well as a
separable objective function. We shall leverage these characteristics to distribute the
computational workload evenly across the network. The resulting O(1) expected
per-node workload will enable our approach to be employed bya significantly less
sophisticated class of processors, or to significantly larger-scale networks. We now
define a hierarchical, cluster-based architecture for achieving this objective.
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5.1 Architectural Overview

Our paradigm solves convex optimization problems in the context of a cluster-based
network architecture under the direction of somerootnode(s). Theroot is responsible
for orchestrating the solve process; thus, it maintains a global state reflecting the
status of the distributed computation. It is responsible for performing such tasks as
initializing the network and determining when the solve is complete. Although the
root maintains a “global perspective”, its data view is primarily limited to that which
affects the computation of its associated decision variables. The only exception is
when it requests data needed to manage the IPM solve process.For instance, when
it requests Newton decrement data.

At the root’s disposal are the remaining nodes in the network, which we term the
secondarypeers. These nodes are consideredsecondary, because they serve only as
a distributed memory pool and a computational engine for theroot during the solve
process; individually, they lack a global view of the solverand only manage data
relevant to their computations. They wait until a data request is received originating
from theroot before transitioning into a new state of computation.

To reduce the communication overhead, we define the architecture to have a hi-
erarchical scheme based upon network clusters. The role of clusterheads is to ensure
that each request of theroot is satisfied at the lowest level. Sub-nodes treat their clus-
terhead as a local accumulator and forward the requested information to that node
where it is aggregated before being passed up the hierarchy,ultimately to theroot.
The result is that theroot (and all clusterheads) only need to send a constant number
of messages with each data request.

5.2 Distributing and Solving the Newton KKT System

Given the objective function and Hessian are separable, implementing a distributed
Newton decrement and line search computation (see [4]) reduces to having each node
pass its contribution to the greater value up the cluster hierarchy at request. For this
reason, along with the fact that the per-iteration complexity is defined by solving
the Newton KKT system, we focus our discussion on distributing theLU solver.
As will be seen, we can effectively distribute the process while providing per-node
computation, storage, and overlay message complexities ofO(1).

To distribute the Newton KKT system,K ∈ R
y×y, amongm nodes, we make the

assumption that the system is band-diagonal with respective upper and lower band-
widths ofbu andbl. Additionally, we assume the matrix is represented in its equiva-
lent compact form,Kc, whereKc ∈ R

y×(bl+bu+1) [18]. We respectively denote the
corresponding right-hand-side and permutation vectors asb ∈ R

y andp ∈ Z
y
+.

Adopting this representation forK, we adapt theLU -based solver with partial
pivoting outlined in [18]. Distributing this algorithm, webegin by assigning theith

node,ni, a sub-blockKi
c ⊂ Kc. Additionally, eachni manages the corresponding

sub-vectorsbi ⊂ b andpi ⊂ p. To illustrate the decomposition, we provide Figure
3, which shows the distribution ofKc for a team of 5 nodes inSE(2) solving the
total distance problem. Given the dependencies between theequations in the linear
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Fig. 3.A non-zero dot-plot illustrating the decomposition of the compact Newton KKT system
(i.e.Kc) for a configuration of 5 nodes inSE(2) minimizing the total distance metric. For this
problem,bl = bu = 7. Notice that the middle(m − 3) nodes (i.e.n3 andn4) are assigned
sub-blocks with identical structure.

system, devising a completely concurrent solution is not feasible. Thus, we assume
the decomposition and subsequent solves are done one node ata time in a “pass-the-
bucket” fashion, where nodeni decomposesKi

c and then hands the process off to
nodeni+1. This process continues iteratively until decomposition is complete.

Decomposition

During decomposition, the algorithm employs partial pivoting by searching at most
bl sub-diagonal elements in order to identify one with greatermagnitude. This im-
plies that a node in our WSN that is performing its respectivedecomposition may
only need information pertaining to at mostbl rows, which can be buffered at one or
more peers. In the worst case scenario, where each node only manages a single row,
nodeni may have to query up tobl of its peers. With this result in mind, we offer the
following theorem:

Theorem 1.Let i ∈ I = {1, . . . ,m} and letKj
c ∈ R

uj×(bl+bu+1), uj ∈ Z+ for
j = 1, . . . ,m. Defineψ(i) : I → Z+ as a mapping to the number of nodes that have
to be contacted byni during the decomposition ofKi

c. The following holds:

ψ(i) ≤ φ(bl, u1, . . . , um) =













bl
(

min
i∈{1,...,m}

ui

)













Proof. By contradiction.
Assumeψ(i) > φ(bl, u1, . . . , um). Choosingui = 1, ∀i ∈ {1, . . . ,m}, we see:

ψ(i) >

⌈

bl

1

⌉

= bl

However, it must hold thatψ(i) ≤ bl, sinceni will only ever require data aboutbl
rows during the decomposition ofKi

c.→←
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Using the data it acquired from itsψ(i) ≤ φ supporting peers (in particular,
ni+1, . . . , ni+ψ(i)), ni performs standardLU decomposition onKi

c. Upon comple-
tion, it sends an update to each of the supporting nodes. The update contains the
modified row(s) information and the adjusted permutation vectors corresponding to
the changes it made with respect to the data the recipient provided. This allows each
supporting node to update its cache before the process is handed off toni+1.

Forward and Backward Substitution

Similar to decomposition, both forward and backward substitution are done in an
iterative manner. In both cases, the active node,ni, will have to communicate with
a small (bounded) number of its peers. During forward substitution, it will have to
acquire information from each of theψ(i) nodes that provided it with data during
the decomposition. This differs from the backward substitution phase, which may
requireni to communicate with up to2φ nodes. The additional messaging is intro-
duced via the upper triangular factor,U , having a bandwidth now constrained by
(bu + bl + 1), which is latent to the use of partial pivoting [12]. Sincenm is the last
node to perform both decomposition and forward substitution, it is responsible for
signaling the start of a new phase in theLU -solver process.

Message and Storage Complexity

For simplicity, the assumption is made that wheneverni requests information from
any node, the data is received in a single message. This assumption is reasonable,
because the amount of information (including row data) thathas to be shared between
any two nodes is a function ofbu andbl, which are both independent of configuration
size. As such, the number of messages required to transmit said data is also constant.
Noting that information is delivered upon request, the total number of messages sent
by ni is:

O(2ψ(i) + 2ψ(i) + 4ψ(i) + γ(i)) ≡ O(8φ + 3) ≡ O(1) (18)

whereγ(i) ≤ 3 is a mapping to the number of hand-off/signal messages sent by ni.
As all nodes sendO(1) messages during the solve, the aggregate message com-

plexity for the distributedLU process isO(m). Recalling that the number of Newton
iterations will beO(1) in practice, we expect that no more thanO(m) messages will
be generated in the overlay network. Furthermore, sinceni manages some fixed-size
Ki
c, bi, pi, and row data received by as many as2φ peers, per-node storage isO(1).

5.3 Experimental Results

To demonstrate our approach, we implemented the distributed framework on a team
of six Sony Aibos and charged the team with transitioning to adelta formation. The
objective was to minimize the total distance traveled by team members. Each Aibo
was outfitted with a unique butterfly pattern [5] that was tracked via an overhead
camera system serving as an indoor “GPS”. Figure 4 (left) shows the initial configu-
ration, along with lines mapping each to its computed optimal position, while Figure
4 (right) shows the Aibos after transitioning to the optimalshape configuration.
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Fig. 4. (left) An initial dispersion of 6 Aibos, along with overlaidlines/points mapping each
to its computed optimal position. (right) The Aibos after reconfiguring to the desired delta
shape formation. All computations were done in a distributed fashion, with each dog being
responsible for computing its optimal position and local control inputs.

6 A Decentralized Hierarchical Approach

For our decentralized approach, we assume a hierarchical model whereby a small
number ofleadernodes acting as exemplars solve the motion planning problem. This
allows the remainingfollower nodes to infer their objective positions through local
observations. Such a model is attractive to not only hierarchical network architectures
[13], but also models where minimizing data communication is a primary objective
[1]. For our decentralized approach, we make the following assumptions.

1. Each node knows the objective shape iconS for the network.
2. Leader nodes (individually or collectively) know the current network shape.
3. Follower nodes haveno knowledgeof the current network shape.
4. Follower nodes can identify their neighbors and measure their relativeposition.
5. Follower nodes can observe therelativeheading of their immediate neighbors.

6.1 An O(1) Decentralized Solution

Key to this approach is the realization that although the optimization problem in (5)
includes2m decision variables (corresponding to them robot positions), the feasible
set is constrained to the equivalence class of the full set ofsimilarity transformations
for the objective formation shape. More concisely: there are only 4 degrees of free-
dom in determining a node’s objective position on the plane which correspond to the
translation, rotation, and scale of the objective shape.

As the leader nodes have knowledge of the current and objective shapes, they can
solve for their objective positions using either of the approaches outlined in Sections
4-5. Follower nodes have more constrained knowledge, and asa result are incapable
of estimating their objective positions. However, an observation of the headingωl
of leaderl introduces an additional constraint on the objective shapeof the form
(ql − pl)

T (sinωl,− cosωl) = 0 where all measurements are relative to the fol-
lower’s coordinate frameF . If the headings of 4 leader nodes can be observed, the
motion planning problem becomes fully constrained via the equality constraints in
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(4). Perhaps more significant is that the problem can now be solved by the follower
nodes in a decentralized fashion, and inO(1) time regardless of formation size.

To see this, recall that in addition to this heading constraint, each robot imposes
two additional equality constraints on the objective network shape as shown in (4).
With 4 leader nodes and 1 follower node, this corresponds to atotal of 4 bearing and
10 shape constraints over 14 decision variables. However, noting that the shape index
(not coordinate) assignments are arbitrary, the follower node can designate itself
as the first index corresponding to the 3-tuple{p1, q1, s1} and associate one of the
observed leaders with{p2, q2, s2}. This eliminates the associated shape constraints
for these two nodes, and reduces the set to

(ql − pl)T (sinωl,− cosωl) = 0, l = 2, . . . , 5
‖ s2 − s1 ‖ (qxl − qx1 )− (sxl , s

y
l )
T (q2 − q1) = 0, l = 3, . . . , 5

‖ s2 − s1 ‖ (qyl − q
y
1 )− (syl , s

x
l )
T (q2 − q1) = 0, l = 3, . . . , 5

(19)

wherel ∈ {2 . . .5} now corresponds to the set of observed leaders. The constraint
set is linear inq, and can be written in the formAq̂ = b, where the solution vector
q̂ ⊂ q is the objective positions of follower and 4 observed leadernodes. It is a
linear system of 10 equations in 10 unknowns, and is readily solvable via Gaussian
elimination techniques.

Thus, each follower node can solve for its objective position (as well as its neigh-
bors) so long as therelativeposition and headings of 4 neighbors can be observed.
This is akin to biological systems (e.g.schools of fish, flocks of birds,etc.) capable
of complex formation changes using only local sensor feedback. Furthermore, the
solution is obtained from solving anO(1) sized(10×10) linear system of equations
- regardless of the number of nodes in the network. The assumption of knowledge of
the objective shape does however requireO(m) storage for each node.

It should also be noted that after solving for its objective position, each follower
is “promoted” to leader status. As it migrates to its objective position, its heading can
be observed by other follower nodes to solve their own decentralized problem. So,
while in practice the actual number of leader nodes will be a function of the sensor
network topology, in theory only 4 arenecessary. This is illustrated in Figure 5.

6.2 Simulation Results

Figure 5 models the initial deployment of a sensor network. The objective config-
uration was a{4,4} tessellation on the plane with a tiling size of 10 meters. Un-
fortunately, positional errors introduced during deployment - modeled as Gaussian
noise∼ N(0, σx=σy =7.5) - result in a significantly different geometry (Figure
5a). To compensate for these errors, four leader nodes (red circles) solve the motion
planning problem, and begin migrating to their objective positions. Relative sensor
measurements allow the remaining follower nodes (blue triangles) to solve for their
objective positions in decentralized fashion. The propagation of decentralized solu-
tions through the network is reflected in Figure 5b. The decentralized trajectories that
minimize the maximum distance that any node must travel, andthe optimal network
configuration achieving the desired shape are shown in Figures 5c-d. It was assumed
that the sensing range of each node was 25 meters.
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Fig. 5. Decentralized Motion Planning: (a) The initial network configuration with leader (red
circle) and follower (blue triangle) nodes. (b) Evolution of the decentralized solution. (c) Node
trajectories (d) Final network configuration achieving thedesired{4,4} tessellation.

Note that in this case, the orientation of the shape was not constrained. If a fixed
orientation was desired (e.g., orthogonal to thex−y axes), the number of degrees
of freedom would be reduced to 3 - as would the number of observations required
to solve the decentralized problem. Fixing the scale would simplify the problem
even further, requiring only 2 observations for each decentralized node solution. We
should also emphasize that although in this example the decentralized solution was
able to propagate through the entire network using the minimum number of leader
nodes, this willnot typically be the case. More than likely, a small number of leader
nodes will be associated with disjoint clusters in the network.

7 Discussion

In this paper, we developed a set of motion planning strategies suitable for large-
scale sensor networks. These solve the problem of reconfiguring the network to a
new shape while minimizing either the total distance traveled by the nodes or the
maximum distance traveled by any node. The centralized approach runs inO(m)
time in practice through banding the Newton KKT system. The distributed approach
reduces the expected per-node workload toO(1) in exchange forO(1) messages
per-node in the overlay network. Finally, we derived a decentralized, hierarchical
approach whereby follower nodes are able to solve for their objective positions in
O(1) time from observing the headings of a small number of leader nodes.
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We are currently extending these results to a more general motion planning
framework. To achieve this, issues such as collision/obstacle avoidance will have
to be addressed. The latter is a particularly challenging task, as the presence of ob-
stacles introduces concave constraints on the feasible set, and the resulting problem
is no longer solvable as a SOCP. We hope that randomization and convex restriction
techniques will still allow the problem to be solved for real-time applications.
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17. P.Ögren and N. Leonard. A tractable convergent dynamic windowapproach to obstacle
avoidance. InIEEE/RSJ IROS, volume 1, Lausanne, Switzerland, October 2002.

18. W. Press et al.Numerical Recipes in C. Cambridge University Press, 1993.
19. Y. Saad.Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied

Mathematics, Philadelphia, PA, USA, 2003.
20. B. Zhang and G. S. Sukhatme. Controlling sensor density using mobility. InThe Second

IEEE Workshop on Embedded Networked Sensors, pages 141 – 149, May 2005.
21. F. Zhang, M. Goldgeier, and P. S. Krishnaprasad. Controlof small formations using shape

coordinates. InProc. IEEE Int. Conf. Robot. Automat., volume 2, Taipei, Sep 2003.


