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Abstract: In this paper, we develop a suite of motion planning strateguitable for large-
scale sensor networks. These solve the problem of recoimfigtive network to a new shape
while minimizing either the total distance traveled by tloeles or the maximum distance trav-
eled by any node. Three network paradigms are investigededralized, computationally dis-
tributed, and decentralized. For the centralized cas@&napsolutions are obtained i@ (m)
time in practice using a logarithmic-barrier method. Keythis complexity is transforming
the Karush-Kuhn-Tucker (KKT) matrix associated with thealtlen step sub-problem into a
mono-banded system solvableGr{m) time. These results are then extended to a distributed
approach that allows the computation to be evenly partticscross the: nodes in exchange
for O(m) messages in the overlay network. Finally, we offer a deaéiméd, hierarchical ap-
proach whereby follower nodes are able to solve for theieabje positions irO(1) time
from observing the headings of a small number (2-4) of leadeles. This is akin to biolog-
ical systemsé€.g.schools of fish, flocks of birdgtc) capable of complex formation changes
using only local sensor feedback. We expect these resultpnve useful in extending the
mission lives of large-scale mobile sensor networks.

1 Introduction

Consider the initial deployment of a wireless sensor netwVSN). Ideally, the
WSN is fully connected with a topology to facilitate coveeagensing, localization,
and data routing. Unfortunately, since deployment mettoaaisvary from aerial to
manual, the initial configuration could be far from ideal. &sesult, the WSN may
be congested, disconnected, and incapable of localizédf ith the environment.
Node failures in established networks could have similfaot$. Such limitations in
static networks have lead to an increased research iniatestnproving network
efficiency via nodes that support at least limited mobil®} [

Also of fundamental importance to WSN research is resouaeagement, and
(perhaps most importantly) power management. Energy copson is the most
limiting factor in the use of wireless sensor networks, asise life is limited by
onboard battery capacity. This constraint has driven rekeato power sensitive
routing protocols, sleeping protocols, and even netwathigectures for minimizing
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data traffic [1, 13]. It would seem only natural to develop imofplanning strategies
with similar performance objectives.

In this vein, we propose a set ofotion planning strategiethat allow a mobile
network to reconfigure to a new geometry while minimizing tb&al distance the
nodes must travel, or the maximum distance that any node travet. We believe
a suite of strategies is critical due to the proliferatiomoh-standard sensor net-
work architectures which are often implementation spec#iie such, we provide
centralized, computationally distributed, and decertteal approaches suitable for
use with large-scale sensor network architectures. Eaabnigutationally efficient,
and without onerous communication overhead.

2 Related Work

Changes to the environment, mission objectives, and ndtledfs are all factors
that can contribute to need for reconfiguring a sensor n&twéowever, topology
changes can also be driven by performance objectives. Foongbe, Cortest al
applied optimization based techniques to motion plannargrhproving network
coverage [7]. Similarly, Zhang and Sukhatme investigatgdgimotion to control
node density [20]. The work of Hidaket al investigated deployment strategies for
optimizing localization performance [16], while the work Butler and Rus was
motivated by event monitoring using constrained resou@le#lso worth noting is
work in the areas of formation control [21], conflict resadut[17], and cooperative
control [3]. A recent survey/tutorial outlining additidrm&levant work within each
of these areas can be found in [11].

In contrast to these efforts, the focus of our work is effitiemtion plan-
ning strategies suitable for large-scale networks. Gindiral and objective network
geometries, we determine how to optimally reposition eauterin order to achieve
the objective configuration while minimizing the distantiest the nodes must travel.
The objective positions can then be fed to appropriate otlets to drive the nodes
to their desired destinations. When servo/actuator castsrthte the power budget,
such approaches can dramatically improve the network amd#fie. We also em-
phasize applicability to large-scale systems. Our metkodke well in terms of both
computational and message complexity to ensure that aatyasgained through ef-
ficient motion planning are not compromised by excessivemdation or routing
requirements. Finally, we provide centralized, compaotally distributed, and de-
centralized models to support the diverse array of WSN techires.

3 The Motion Planning Problem

In developing our motion planning strategies, we consitlergroblem of having
a multi-agent team transition to a new shape formation whil@mizing either the
total distance or maximum distance metric. For our purpagesdopt the traditional
definition of shape that is often employed in statisticajpghanalysis [10]:
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Definition 1. The shape of a formation is the geometrical information teatains
when location, scale, and rotational effects are removed.

Thus, formation shape is invariant under the Euclideanlaiity transformations of
translation, rotation and scale [10].
For brevity, in this paper we only consider operationsS#'(2) and refer
the reader to [9] for details on obtaining optimal solutionsR3. Letting Q =
[q1, ... ,qm]T € R™*2 denote the concatenated coordinates of the objective shape
formation with respect to some world frar® and lettingS = [s1,..., sm]T €
R™*2 denote an instance (or &won) of our objective shape with respect to some lo-
cal frameF, the shape of a robot formation can be represented as théespiality
constraints:
qF — q¢f = a(s¥cosf — s!sinh)
¢/ — ¢} = a(s¥sinb + s cosb)

1)

fori = 2,...,m. In this formulation € R4 andé respectively denote the scale
and orientation of the formation, while the;, y) superscripts denote the specific
Euclidean coordinate.

Without loss of generality, we can define the objective fdiorascale and ori-
entation respectively as:

— _ Yy _ Y
o= g2 —a | _ g2 —a | 0 — arctan qi qi @)
Fs2=sill sz g5 — di

The former equalities hold as we chooﬁeé O x. From the latter, we obtain:

T _ T y _ Y
9 — 47 §inf — 4> — 4

cosf) = ——— .
a2 —aq |l | g2 —aq1 |l

(3)
Given these definitions, the non-convex constraints in éb) lze restated as the fol-
lowing set of linear equalities:

H 52 H (qfqu)f(sf,si’)T(qQ—ql):O, 7;:3,...,7’)1 (4)
I 's2 1l (af —a) = (s,8) (g2 —q1) =0, i=3,....m

These constraints are now convex, and they define the egna@lklass of the
full set of similarity transformations of the formation. 0%, if an objective shape
Q@ and an iconS satisfy these constraints, the two shapes are equivaleieruhe
Euclidean similarity transformations of translation,atiin and scaling. So, given
an initial formation position? = [p1,. .. ,pm]T € R™*2 | and an objective shape
icon S, the problem becomes finding the set of objective posit@ns S such that

1. max || ¢; — p; || is minimized fori = 1,...,m OR
k
2. > |l ¢ — p; || is minimized.
=1
In other words, if the network were given an objective icrt must determine the

objective positions for each node that minimizes the chasetric, while ensuring
the final shape formatio@ C W is equivalent tcS.
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As the constraints are linear @, the problems can be modeled as the respective
second-order cone programs (SOCPs)

m

min 1 min t;
s (5)
st. || @i —pill2<t st |l g —pill2< t;
Ag=0 Ag=0
fori = 1,...,m. Since the SOCPs are convex, a local minimum corresponds to a

global minimum. This allows optimal solutions to be obtairtbrough a variety of
methods such as descent techniques or (more efficiently)tbyior point methods
(IPMs). While primal-dual IPMs represent perhaps the mffgtient algorithms, we
employ a simpler barrier IPM. It provides good computatiaranplexity in prac-
tice, and as we shall see lends itself to a computationalyiduted implementation.

Finally, in the interest of brevity, the results presentethis paper largely focus
on themini-maxdistance problem as defined in Equation 5 (left). It shoulddted
that similar results have been obtained for the total destasariation [9].

4 A Centralized Approach

Centralized approaches are appropriate for hierarchétalark architectures such as
the TENET [13]. For the motion planning problem, “masterties acting as cluster-
heads would calculate the objective positions for the elushd communicate these
to supporting nodes in the network. While simple in desige, hierarchy requires
that algorithms scale well computationally with the sizetef network.

To address this, we solve the motion planning problem by tuaphe loga-
rithmic penalty-barrier approach outlined in [4]. Like ethiIPMs, the complexity
is largely defined by solving a linear system of equationghia case, Equality-
constrained Newton’s method (ENM) is used for internal mization and the linear
system is in KKT form. As solving this system provides a soluto the Newton step
sub-problem, we accordingly refer to it as the “Newton KKBt®m.” We show that
by reformulating the SOCP, we can band the coefficient madrsolve the systemin
O(m) time via algorithms that exploit knowledge of matrix bandthi. Furthermore,
we show empirically that the total number of iterations rieggito reduce the duality
gap to a desired toleranceG¥1). The result is a simple IPM that in practice solves
the motion planning (and similar) problemsa@r{m) time.

4.1 Reformulating the Motion Planning Problem

The originalmini-maxmotion planning problem can be restated in a relaxed form
suitable for solving via the barrier approach. Conversiequires augmenting the
objective function given in (5) with log-barrier terms cesponding to the problem’s
conic constraints as follows:
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min 7t1 — Y log (8 — (¢ — pi) " (@i — pi))
et i=1 (6)
s.t. Ag =0

wherer;, is the inverse log-barrier scaler for th&" iteration. Essentially, solving
our SOCPs reduces to solving a sequence of convex optimizatbblems of this
form, where after each iteratian; is chosen such thaj, ., > 7%.

4.2 Banding the Newton KKT System

During each iteration of the log-barrier approach, we airminimize the second-
order Taylor approximation of our objective function as adtion of the Newton
step,dx, subject toAdx = 0. As a result, obtainingz is equivalent to analytically
solving the KKT conditions associated with this equalitrstrained sub-problem.
In other words, we must solve the following linear systemapiations [4]:
H AT [ 6x —g

][] g
whereH andg respectively denote the evaluated Hessian and gradiehe aftijec-
tive function given in (6) at;, w is the corresponding dual variable fér, and A
is as previously defined. Solving (7) is the bottleneck ofalgorithm; however, we
will show that it can be solved very efficientliyg€.in O(m) time) by simply reposing
the problem given in (6).

Noting that the coefficient matrix of (7) is symmetric indéfn we employ
Gaussian elimination with non-symmetric partial pivotifitne performance of this
technique suffers significantly when the linear system iestjon features dense rows
and/or columns due to fill-in [19]. In particular, the algbm could yield a worst-
case performance aP(m?) when solving an instance of (7) associated with the
nominal problem formulation given in (6). To illustrate $hpoint, we include Fig-
ure 1 (left) which shows the corresponding non-zero spastiucture é.k.a.the
dot-plot) of the Newton KKT system. As the rows of system agenuted during
reduction, the dense rows and columns respectively lodatdte upper-right and
lower-left quadrants of (7) could introduce a solid subeklilof orderm x m, which
itself would requireO(m?) basic operations to reduce. Such a workload is highly
impractical, especially when considering large-scalefiganations that inherently
feature 1000's of decision variables.

To address this issue, we present the following auxiliargnidation of (6) that
facilitates transforming the Newton KKT system into a mdranded form:

m m

min 7t >t — > log (8] — (4 —pi)" (45 — i)

=1 i=1
s.t. Ag=0
ti+1:ti, Z':].,...,mf]. (8)
doit1 =d2i—1, i=1,...,m—3
d2(i+1):d2i7 Z:1,7m—3

di =gq; 1€ {1,2}
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Fig. 1. (left) The nominal Newton KKT system sparsity structure fioe mini-maxmotion
planning problem inSE(2). (center) Augmented Newton KKT system sparsity structure.
(right) The banded system with lower and upper bandwidtt& of

Notice that the objective has changed from (6); however,eeetlsat both forms are
equivalent since:

m m
Tk Z Tk Tk
— ) ti=— Zh = (—) mir = Tt 9)
mi= mis m

where the first equality holds due to the equality constsgitaced ort;.

Given this augmented formulation, our claim is that the exystan be made
mono-banded. To show this, we begin by defining the nominatiso vector for
the coefficient structure of (7) as follows:

T
{577?7 577;; 5/{?7 ] 5’€(7;n—2)a :LLT:| (10)
Sqi Odly(i-1)+1 o
ons = [57;} Ok = | 0da(i—1)42 | B =
0M(i+2) Wrm—13

where the) variables correspond to the primal Newton step componastscéated
with each of the respective system variables.

Given the new objective, (9), and assuming the shape prdbkotution vector
permutation corresponds with (10), the Hessian for ourleralis now

oo (G | : ()

| Oaxa  Oaxs -
i = |:03><4 V2¢)(ui,ti)] 1€ {37 o .’m}

wherev?¢(u;, t;) is defined as in [14] withi; = ¢; — p;. Notice that this Hessian
is block-diagonal and separable. This differs from the ammal form, which fea-
tures a dense row and column corresponding to the variabl&his is evident by



Efficient Motion Planning Strategies for Large-scale Semstworks 7

observing the upper-left quadrant (defined#by of the KKT matrix given in Figure
1 (left).

Similarly, we can eliminate the dense columns and rows {and A™) by intro-
ducing2(m — 2) auxiliary d; variables along with their associaté@n — 3) equality
constraints. Doing so allows us to rewrite (4) as:

| 's2 || (gF —d¥) = (s7,s)) (djr1 — dj) =
[ s2 |l (¢ —df) — (s}, s}

fori =3,...,mandj = 2(i — 3) 4+ 1. By reformulating the linear shape constraints
in this fashion, we are now able to constructs apseudo-bandesgystem. We say
pseudo-bandedbecause the matrix is non-square and exhibits a bandttiketsre.

To show this, we begin by stating the constraint/row permutahat yieldsA in
pseudo-bandefibrm. We define the constraints associated witlandg, as:

(12)

A T
01 =¢qf =dj 6 oo
04 =q3 =d
02 =qf =df 05 équ/ :di (13)
03 £t =1y 2 2

Similarly, for3 < ¢ < (m — 1), we define the constraints associated withs:

A gz _ gz
Pig = dj+2 = dj

ein = | s2 || (¢f —df) = (s7,5))" (dj+1 — dj) o 2V — )
pi, = | s2 | (¢f —d¥) = (s, s7)" (dj1 — dj) AR (14)

A
NN
Qis Tt =11 Pia A §,+3 {[H
Pir = dj+3 = dj+1
wherej is as previously defined.
With ¢,,,, we associate the remaining three constraints:

omy = |l 52 || (g5, — d5) = (57, %) (djsa — dj)
Pmy = || 52 || (g8, — dY) = (sb,,55,)" (djy1 — dj) (15)
Pms £ tm = tm—l
wherej is as previously stated with= m.
Given these definitions, we provide the following row peratiain for A, which
yields thepseudo-bandefibrm that appears in the lower-left (and upper-right) quad-
rant of Figure 1 (center):

I P gT} (16)
01 P(i+2)1
02 P(i+2)2 Pm
' ' Pmsz
05 P(i+2)7

Notice that all of the primal constraints defined &) fave been included.
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Given the definitions oft and H, the mono-banded form of (7) can now be con-
structed. Symmetrically applying the permutation thatdgehe following Newton
KKT system solution vector ordering:

T

el el X” (17)
[ g1 ] _5d2(i—1)+1 1 [ 6dom—5 |
otq dda(i—1)+2 8o —a
w1 We47(i—1) Wim—15
A= &= : X = | Wrm-14
ws Wi247(i—1) wgm—w
dqo (5q(i+2) 6(]m
L (Stg 1 L 5t(1+2) i L t"”

produces a mono-banded coefficient structure having aldatadwidth of 17. Simply
using the standard Reverse Cuthill-McKee (RCM) reordealggprithm [8] would
yield a bandwidth 47% larger than that obtained with our apph.

In Figure 1 (center), we show the “augmented” Newton KKT egstonstructed
from the Hessian given by (11) and the linear constraintisengn (8). The latter is
permuted according to (16). Taking the coefficient struetfr(7) in this form and
symmetrically permuting its rows and columns accordinglto) (yields the mono-
banded system appearing in Figure 1 (right). The systenegponds to a team of
25 agents dispersed §1F(2). It can now be solved i®(m) using a band-diagonal
LU-based solver [18].

4.3 Total Complexity

Assuming a fixed duality gap reduction, the iteration comityeof the barrier ap-
proach grows a®(,/m) [4]. Noting that the per-iteration complexity is defined by
solving the mono-banded Newton KKT system as well as comgltanded matrix-
vector products, the total number of basic operations redud achieve optimality
grows only ag)(m!-?). The generality of this result should not go overlooked as th
bound applies to any SOCP that yields a mono-banded Newtoh ${istem. This
includes regulated cases of the motion planning probleR?ifo].

4.4 Performance in Practice

To gauge the performance of the framework in practice, werasd both a fixed du-
ality gap reduction and barrier parameteas suggested in [4]. A total of 5,000 ran-
dom instances of the motion planning problem were solveten implementation

of the barrier algorithm. The objective was to minimize tbialt distance traveled by
the team. Values of: were considered between 10 and 1000 at intervals of 10, where
m denotes configuration size. Our implementation was vaitlal comparing ob-
tained solutions against those of the MOSEK industrial eo[¢5]. All problems
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Fig. 2. (left) The mean number of Newton iterations required to edhe motion planning
problem (total distance metric) as a function of configwratsize,m. Form Z 170 the
number of iterations appears constant using the log-saapproach. Error bars signify a
single standard deviation. (right) The mean CPU-util@matime required to solve the motion
planning problem using the MOSEK solver. The trend is stipfigear, withr? = 0.9869.

were solved using a standard desktop PC having a 3.0 GHaiReaAtprocessor and
2.0 GB of RAM.

Figure 2 (left) shows the results of these trials. Each daitat gorresponds to the
mean of 50 samples with the error bars corresponding to ¢éesstgndard deviation.
The trend indicates that the total number of Newton itereti®@mains constant (for
m Z 170). This result in tandem with the linear per-iteration coaxitly established
earlier shows that in practice the motion planning problesoivable inrO(m) time.

These results are associated with the simple barrier methitided in [4]; how-
ever, it should be noted that empirical results show thailaimperformance can be
achieved using more sophisticated solvers. Figure 2 {rajtows the CPU time re-
quired by the MOSEK industrial solver for configuration sizgaving up to 2000
nodes. Each point corresponds to the mean obtained frorimgd@ randomly gen-
erated motion planning SOCPs (total distance metric). @his shows that for a
configuration of 2000 nodes ifiE(2) an optimal solution can be obtained in only
0.28 seconds. Furthermore, the CPU time clearly scaléqas with linear regres-
sion analysis revealing = 0.9869, wherer is the associated correlation coefficient.
Results obtained using the solver also indicate that amgpgolution can typically
be found in less than 12 iterations - regardless of configanaize.

5 A Computationally Distributed Approach

Our centralized solution features both a band-diagonahlirsystem as well as a
separable objective function. We shall leverage theseackeristics to distribute the
computational workload evenly across the network. TheltieguO(1) expected
per-node workload will enable our approach to be employed bignificantly less
sophisticated class of processors, or to significantlyelasgale networks. We now
define a hierarchical, cluster-based architecture forexinj this objective.
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5.1 Architectural Overview

Our paradigm solves convex optimization problems in theexdrof a cluster-based
network architecture under the direction of soim@t node(s). Theootis responsible
for orchestrating the solve process; thus, it maintainsodallstate reflecting the
status of the distributed computation. It is responsibtepferforming such tasks as
initializing the network and determining when the solve anplete. Although the
root maintains a “global perspective”, its data view is primgalinited to that which
affects the computation of its associated decision veggblhe only exception is
when it requests data needed to manage the IPM solve préeessstance, when
it requests Newton decrement data.

At the root's disposal are the remaining nodes in the network, whichenm the
secondarypeers. These nodes are considexecbndarybecause they serve only as
a distributed memory pool and a computational engine forgbeduring the solve
process; individually, they lack a global view of the soleerd only manage data
relevant to their computations. They wait until a data restjisereceived originating
from theroot before transitioning into a new state of computation.

To reduce the communication overhead, we define the artiigeto have a hi-
erarchical scheme based upon network clusters. The rolasibcheads is to ensure
that each request of thieot is satisfied at the lowest level. Sub-nodes treat their clus-
terhead as a local accumulator and forward the requestethiafion to that node
where it is aggregated before being passed up the hierarktimyately to theroot.
The result is that theoot (and all clusterheads) only need to send a constant number
of messages with each data request.

5.2 Distributing and Solving the Newton KKT System

Given the objective function and Hessian are separabldemmgnting a distributed
Newton decrement and line search computation (see [4]resio having each node
pass its contribution to the greater value up the clusteahtay at request. For this
reason, along with the fact that the per-iteration compyeisi defined by solving
the Newton KKT system, we focus our discussion on distritmutihe LU solver.
As will be seen, we can effectively distribute the processieybroviding per-node
computation, storage, and overlay message complexiti©s bf

To distribute the Newton KKT systenk € RY*Y, amongn nodes, we make the
assumption that the system is band-diagonal with respeatwper and lower band-
widths ofb,, andb;. Additionally, we assume the matrix is represented in its\ext
lent compact formK,., wherek . € Rv*(n+bu+1) [18]. We respectively denote the
corresponding right-hand-side and permutation vectobsaa® andp € 7.

Adopting this representation fdkx, we adapt the.U-based solver with partial
pivoting outlined in [18]. Distributing this algorithm, weegin by assigning th&"
node,n;, a sub-blockK! C K.. Additionally, eachn; manages the corresponding
sub-vectord; C b andp; C p. To illustrate the decomposition, we provide Figure
3, which shows the distribution ot for a team of 5 nodes I8 E/(2) solving the
total distance problem. Given the dependencies betweesadgih&tions in the linear
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Fig. 3. A non-zero dot-plot illustrating the decomposition of tlierpact Newton KKT system
(i.e. K.) for a configuration of 5 nodes ifi£/(2) minimizing the total distance metric. For this
problem,b; = b, = 7. Notice that the middlém — 3) nodes (i.ens andn4) are assigned
sub-blocks with identical structure.

system, devising a completely concurrent solution is nasitde. Thus, we assume
the decomposition and subsequent solves are done one natimatin a “pass-the-
bucket” fashion, where node; decompose#’ and then hands the process off to
noden;1. This process continues iteratively until decomposit®oamplete.

Decomposition

During decomposition, the algorithm employs partial pirgtby searching at most
b; sub-diagonal elements in order to identify one with greatagnitude. This im-
plies that a node in our WSN that is performing its respeatigeomposition may
only need information pertaining to at madgtrows, which can be buffered at one or
more peers. In the worst case scenario, where each node anlyges a single row,
noden; may have to query up tiy of its peers. With this result in mind, we offer the
following theorem:

Theorem 1.Leti € 7 = {1,...,m} and letKJ € Ruw>buitbutl) . ¢ 7. for
j=1,...,m.Definey(i) : T — Z, as a mapping to the number of nodes that have
to be contacted by, during the decomposition df . The following holds:

. b
V(i) < dbr,ur, .. ) = | ——————
( min u )
i€{l,...,m}
Proof. By contradiction.
Assumey(i) > ¢(by, ug, ..., uny). Choosingu; = 1,Vi € {1,...,m}, we see:

(i) > [ﬂ )

However, it must hold thai(i) < b;, sincen; will only ever require data abou
rows during the decomposition &f?. —«
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Using the data it acquired from it(i) < ¢ supporting peers (in particular,
Nit1,- -, Nigyp(i)) 7i Performs standardU decomposition orii. Upon comple-
tion, it sends an update to each of the supporting nodes. pHate contains the
modified row(s) information and the adjusted permutatioctmes corresponding to
the changes it made with respect to the data the recipiewidaad. This allows each
supporting node to update its cache before the process ietanif ton,; 1.

Forward and Backward Substitution

Similar to decomposition, both forward and backward saltin are done in an
iterative manner. In both cases, the active nedewill have to communicate with
a small (bounded) number of its peers. During forward stuigih, it will have to
acquire information from each of thg(i) nodes that provided it with data during
the decomposition. This differs from the backward substituphase, which may
requiren; to communicate with up t@¢ nodes. The additional messaging is intro-
duced via the upper triangular fact@f, having a bandwidth now constrained by
(b, + by + 1), which is latent to the use of partial pivoting [12]. Sineg is the last
node to perform both decomposition and forward substitytibis responsible for
signaling the start of a new phase in th&-solver process.

Message and Storage Complexity

For simplicity, the assumption is made that whenevgrequests information from
any node, the data is received in a single message. This psans reasonable,
because the amount of information (including row data)laatto be shared between
any two nodes is a function &f, andb;, which are both independent of configuration
size. As such, the number of messages required to transchidai is also constant.
Noting that information is delivered upon request, theltotanber of messages sent
by n; is:

OQu(i) + 2¢(i) + 49 (i) + (i) = 08¢ + 3) = O(1) (18)

wherevy(i) < 3 is a mapping to the number of hand-off/signal messages gent b

As all nodes send@(1) messages during the solve, the aggregate message com-
plexity for the distributed.U process i$)(m). Recalling that the number of Newton
iterations will beO(1) in practice, we expect that no more th@(m) messages will
be generated in the overlay network. Furthermore, sineceanages some fixed-size
K, b;, p;, and row data received by as many2aspeers, per-node storage(x1).

5.3 Experimental Results

To demonstrate our approach, we implemented the distdduéenework on a team
of six Sony Aibos and charged the team with transitioning ¢ieléa formation. The
objective was to minimize the total distance traveled bynt@aembers. Each Aibo
was outfitted with a unique butterfly pattern [5] that was keatvia an overhead
camera system serving as an indoor “GPS”. Figure 4 (leftyvstibe initial configu-

ration, along with lines mapping each to its computed optjpoaition, while Figure

4 (right) shows the Aibos after transitioning to the optirsladpe configuration.
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Fig. 4. (left) An initial dispersion of 6 Aibos, along with overlalthes/points mapping each
to its computed optimal position. (right) The Aibos aftecaafiguring to the desired delta
shape formation. All computations were done in a distriduteshion, with each dog being
responsible for computing its optimal position and locaitcol inputs.

6 A Decentralized Hierarchical Approach

For our decentralized approach, we assume a hierarchicd¢lmhereby a small
number oleadernodes acting as exemplars solve the motion planning praflbis
allows the remainindollower nodes to infer their objective positions through local
observations. Such a model s attractive to not only hi¢iaed network architectures
[13], but also models where minimizing data communicat®a primary objective
[1]. For our decentralized approach, we make the followisguaptions.

Each node knows the objective shape isdior the network.

Leader nodes (individually or collectively) know the @t network shape.
Follower nodes haveo knowledgef the current network shape.

Follower nodes can identify their neighbors and measeie relative position.
Follower nodes can observe ttedative heading of their immediate neighbors.

agprpwNE

6.1 An O(1) Decentralized Solution

Key to this approach is the realization that although thénaiptition problem in (5)
includes2m decision variables (corresponding to theobot positions), the feasible
set is constrained to the equivalence class of the full seiafarity transformations
for the objective formation shape. More concisely: theeanly 4 degrees of free-
dom in determining a node’s objective position on the plah&tvcorrespond to the
translation, rotation, and scale of the objective shape.

As the leader nodes have knowledge of the current and olgestiapes, they can
solve for their objective positions using either of the aygmhes outlined in Sections
4-5. Follower nodes have more constrained knowledge, andesult are incapable
of estimating their objective positions. However, an olagon of the heading),
of leader! introduces an additional constraint on the objective shafphe form
(gt — p)¥ (sinwy, — cosw;) = 0 where all measurements are relative to the fol-
lower’s coordinate framé . If the headings of 4 leader nodes can be observed, the
motion planning problem becomes fully constrained via theadity constraints in
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(4). Perhaps more significant is that the problem can now beddy the follower
nodes in a decentralized fashion, andi(l) time regardless of formation size.

To see this, recall that in addition to this heading constraach robot imposes
two additional equality constraints on the objective netnwghape as shown in (4).
With 4 leader nodes and 1 follower node, this correspondsdtabof 4 bearing and
10 shape constraints over 14 decision variables. Howeogngithat the shape index
(not coordinate) assignments are arbitrary, the follower naate designate itself
as the first index corresponding to the 3-tufle, ¢1, s1} and associate one of the
observed leaders witfps, g2, s2}. This eliminates the associated shape constraints
for these two nodes, and reduces the set to

(g — o) (sinwy, — coswy) l=2,...,5
[|'s2=s1 || (af —af) = (s7,))" (a2 — qn) 1=3,....,5 (19)
|'s2=s1ll (@ —af) = (s{.5))" (g2 — @) =0, 1=3,....5

wherel € {2...5} now corresponds to the set of observed leaders. The cantstrai
set is linear ing, and can be written in the formig = b, where the solution vector

G C q is the objective positions of follower and 4 observed leausdes. It is a
linear system of 10 equations in 10 unknowns, and is readliyable via Gaussian
elimination techniques.

Thus, each follower node can solve for its objective posifes well as its neigh-
bors) so long as theelative position and headings of 4 neighbors can be observed.
This is akin to biological systemeg.schools of fish, flocks of birdgtc) capable
of complex formation changes using only local sensor feekibaurthermore, the
solution is obtained from solving an(1) sized(10 x 10) linear system of equations
- regardless of the number of nodes in the network. The assomgf knowledge of
the objective shape does however reqadifen) storage for each node.

It should also be noted that after solving for its objectiesifion, each follower
is “promoted” to leader status. As it migrates to its objgposition, its heading can
be observed by other follower nodes to solve their own deakréd problem. So,
while in practice the actual number of leader nodes will barecfion of the sensor
network topology, in theory only 4 areecessaryThis is illustrated in Figure 5.

=0,
=0,

6.2 Simulation Results

Figure 5 models the initial deployment of a sensor netwotie ©bjective config-
uration was &4,4} tessellation on the plane with a tiling size of 10 meters. Un-
fortunately, positional errors introduced during depl@nh- modeled as Gaussian
noise~ N(0,0,=0,=7.5) - result in a significantly different geometry (Figure
5a). To compensate for these errors, four leader nodesifes} solve the motion
planning problem, and begin migrating to their objectivsifions. Relative sensor
measurements allow the remaining follower nodes (bluadtis) to solve for their
objective positions in decentralized fashion. The progiagaf decentralized solu-
tions through the network is reflected in Figure 5b. The deaéimed trajectories that
minimize the maximum distance that any node must traveltlamadptimal network
configuration achieving the desired shape are shown in &gfoe-d. It was assumed
that the sensing range of each node was 25 meters.



Efficient Motion Planning Strategies for Large-scale SeNstworks 15

e

P I o
f//'?‘/"x\ﬁ\-‘ f""’“
ey /'\:\‘? ~
“‘JA’ASAL—‘"\/‘
S
(p{LTeen
LI

Fig. 5. Decentralized Motion Planning: (a) The initial network &igaration with leader (red
circle) and follower (blue triangle) nodes. (b) Evolutidrtle decentralized solution. (c) Node
trajectories (d) Final network configuration achieving tlesired{4,4} tessellation.

Note that in this case, the orientation of the shape was nattcained. If a fixed
orientation was desirec(g, orthogonal to the: —y axes), the number of degrees
of freedom would be reduced to 3 - as would the number of olasiens required
to solve the decentralized problem. Fixing the scale woirdtpkfy the problem
even further, requiring only 2 observations for each deedined node solution. We
should also emphasize that although in this example thentledized solution was
able to propagate through the entire network using the mimimumber of leader
nodes, this willnottypically be the case. More than likely, a small number oflera
nodes will be associated with disjoint clusters in the nekwo

7 Discussion

In this paper, we developed a set of motion planning strasegiiitable for large-
scale sensor networks. These solve the problem of recommfigtire network to a
new shape while minimizing either the total distance trastdby the nodes or the
maximum distance traveled by any node. The centralizedoagprruns inO(m)
time in practice through banding the Newton KKT system. Tisérithuted approach
reduces the expected per-node workloadXd) in exchange folO(1) messages
per-node in the overlay network. Finally, we derived a démdized, hierarchical
approach whereby follower nodes are able to solve for tHgeative positions in
O(1) time from observing the headings of a small number of leaddes.
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We are currently extending these results to a more generibmplanning
framework. To achieve this, issues such as collision/alstavoidance will have
to be addressed. The latter is a particularly challengisk), tas the presence of ob-
stacles introduces concave constraints on the feasihlarsgthe resulting problem
is no longer solvable as a SOCP. We hope that randomizatbn@mvex restriction
techniques will still allow the problem to be solved for réiahe applications.
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