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Abstract

In this paper, we present an extension to existing work on hybrid free-space op-

tics/radio frequency (FSO/RF) networks for mobile robot teams. Previous work

[3], raised technical challenges for the deployment of mobile robot teams utiliz-

ing hybrid FSO/RF networks. This paper attempts to address these concerns by

demonstrating a feasible implementation for autonomous deployment of a free-space

optical link in an outdoor environment.

Specifically, we address the problem of navigation and link acquisition in an

outdoor environment. The solution uses an extended Kalman filter (EKF) to fuse

local sensor measurements, and a proportional-differential controller for navigation.

Our link acquisition is a vision-based system, which we defined so as to establish

high-throughput carrier grade patches. Unlike a naive approach, our method avoids

correlation-based template matching and instead implements a scale invariant fea-

ture transform (SIFT)[9]. This method allows us to establish optical links using

only a single template that can be tracked independent of affine transforms in the

image scene.
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Chapter 1

Introduction

In a scenario where communications infrastructure in an urban area is damaged or

destroyed, often the repair work is hazardous or impractical and would benefit from

an automated, temporary repair technique. Using traditional radio frequency (RF)

technologies to patch a severed fiber link is not practical given the rapid decline

in throughput at moderate ranges. Instead, we envision a scenario where a team

of automated robots could be used to create carrier-grade patches to the damaged

network. By using free-space optic transceivers (FSO), the distance and bandwidth

limitations are resolved, but deployment becomes slightly more complex. Our work

combines RF and FSO network technologies to create a hybrid network that can be

deployed automatically using robots and a simple link acquisition system[2].

Free-space optics are not a direct replacement for all RF network solutions, but

they do provide advantages that, in combination with RF technologies, make a

hybrid solution desirable. RF networking typically does not require line-of-sight

for deployment, where as FSO technologies do. This shortcoming does come with

the advantage of high throughput. While most all widespread wireless technologies

(e.g. UWB, 802.11x), rapidly lose bandwidth at short distances (r ≥ 15m) [13],

commercial FSO technologies can provide several Gbps over distances greater than

a kilometer. Hybrid solutions could provide the best of both worlds, giving long

distance, high throughput backbones to small clusters of RF networks that do not

have line-of-sight restrictions.
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1.1. SYSTEM OVERVIEW

Figure 1.1:

The approach taken here is combine a RF/FSO hybrid solution with a small

group of autonomous robots (e.g. see Figure 1.1). In the past, the setup of a FSO

link required tedious alignment of both networking heads to provide line-of-sight

communication. This involves a skilled human technician, possibly one at each

site setting up the FSO link, often only in a static configuration. Our approach

uses a hierarchical link acquisition system that utilizes high zoom cameras, pan/tilt

mechanisms and prior knowledge to locate, identify and connect to link partners. All

of our experiments were done in an autonomous fashion using two robotic research

platforms in an outdoor environment.

1.1 System Overview

For all of the trials conducted, we used a pair of modified Pioneer P3-ATs. These

robots are equipped with four major systems that were used for the navigation

and link acquisition: vision system, pan/tilt FSO head, GPS receiver and three

axis orientation sensor. The base platform is provided by MobileRobots (formally

ActivMedia) and is equiped with odometry information, which we use to measure

the linear velocity of the robot. Mounted to the platform is a pan-tilt-zoom camera

from Sony using a 1/4 inch CCD, with a optical focal length from 4.1 to 73.8 mm.

The pan/tilt FSO mechanism is a custom built assembly used to orient the FSO,

3



1.1. SYSTEM OVERVIEW

(a) Garmin GPS18 (b) MicroStrain 3DMG

Figure 1.2: These sensors are used to measure position and orientation of the robot
platform

a 100 Mbps LaserWire, with two degrees-of-freedom (DOF). The GPS receiver is a

Garmin GPS 18 USB, which is able to track 12 satellites and is enabled with Wide

Area Augmentation System (WAAS). Finally, mounted on an extention above the

robot, is the three axis orientation sensor or inclinometer. Our robots are equipped

with a MicroStrain 3DMG capable of measuring roll, pitch and yaw in absolute,

velocity and acceleration values.
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Chapter 2

Link Acquisition

2.1 Introduction

In any of the proposed scenarios involving hybrid RF/FSO nodes, the largest tech-

nical challenge involves establishing and possibly maintaining the optical link. In

a commercial scenario, a skilled technician would use an optical sight to carefully

align the two FSO heads. This process must now be replicated by the hybrid node,

so as to effectively and efficiently establish the connection. To overcome these is-

sues, a hierarchical link acquisition system was proposed in [3]. A review of that

system and our improvements to it are outlined here. An overview of the entire link

acquisition system can be seen in Figure 2.1.

Figure 2.1: The three phase diagram of the link acquisition system
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2.2. COARSE ALIGNMENT

2.2 Coarse Alignment

In the proposed scenario, we can imagine that both robots are given a priori des-

ignated waypoint targets. This implies that prior to deployment each robot would

know its link partner’s objective pose. We assume there is a common reference frame,

W , to which both robots can compute their own pose (position and orientation).

This assumption is not restrictive, as we implemented a solution using a global po-

sitioning system (GPS) and an orientation sensor, which provided a common frame

of reference for all of the robots.

We will typically denote a position or objective waypoint as, x ∈ <3, in our

world frame, W . We will assume there are two objective positions, {x1, x2}, in the

world frame. Each robot will be able to navigate to the objective positions with

some small pose error, which assumes that the robots can measure their position and

orientation in the world frame. After each robot reaches the objective waypoint, it

will adjust its relative orientation to coarsely align the FSO transceivers. Without

loss of generality, only one side, x1, will be shown in the calculations, but they are

equally valid from each side of the link. Assuming that the optical transceiver frame,

F1, and W are equivalent up to a translation, then the link direction from x1 to x2

would be

~x =
x2 − x1

‖x2 − x1‖
(2.1)

This does not completely define the direction from F1 to x2, because of the un-

certainty in current orientation. Using the local rotation matrix, R1 ∈ SO(3), as

measured by the on-board sensors, we can compute the target direction in F1 by

x̂ = RT
1 ~x. Converting this target direction to spherical coordinates


 θ

ψ


 =




arctan
[

x̂(3)√
x̂(1)2+x̂(2)2

]

arctan
[
x̂(2)
x̂(1)

]


 (2.2)

where x̂(k) denotes the kth element of the vector. The result, {θ, ψ}, defines the az-

imuth and elevation for the FSO head to be aligned with the link partner’s location.

As previously stated, each robot may have both position and orientation errors,

which makes the direct application of (2.2) difficult. However, we can use these
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2.3. VISION

results to seed a second alignment stage that will refine the previous orientation

estimates given above. The use of the optical link implies a line-of-sight to the

partner robot, which can be exploited in refining our link estimate. This allows

the robots to utilize a high zoom camera to assist in the second phase of the link

establishment.

2.3 Vision

After migrating to their respective objective waypoints, the robots have orientate

themselves, so as to be approximately the optical transceivers in the right place

facing each other. In reality, this migration process inherently has an error associated

with it, making it unlikely that the partner robot will be in the theoretically ideal

location. As the distance between the robots grows, so does the possibility that the

partner robot will be outside the initial field-of-view (FOV). To combat this problem,

in the second phase, the robot will search in azimuth and elevation with its pan-tilt-

zoom camera for the partner robot. Using this information, the orientation estimate

can be recalculated to provide the correct angle information for aligning the FSO

head.

One of the main advantages of using a vision-based approach is that each robot

can actively search for its link partner independently of the link partner’s own

search. Since each robot has a FSO transceiver, we could search using the internal

link acquisition system built into FSO heads to test alignment. But, this approach

would expand the search space exponentially, because both heads would need to be

aligned to verify a positive match. In our vision approach, each robot can locate the

link partner independently of any other robot, thereby reducing the search space

from <4 to <2.

7



2.3. VISION

2.3.1 Previous Work

In the initial proposal [3], a two-dimensional pattern matching approach was used.

The authors discuss the limitations associated with using this type of pattern match-

ing scheme. The first limitation is the number of templates needed to capture the va-

riety of orientations and positions, which would become computationally intractable

very quickly. The authors reduce the number of templates needed by exploiting the

a priori knowledge of the location and orientation of the link partner. The paper

goes on to suggest that this would reduce the number of templates (≈ 20) as long

as a robust tracking algorithm is used. This type of template matching approach

also quickly breaks down under large (> 30%) changes in scale or orientation.

The approach taken here is to replace the template based pattern matching with

another algorithm, which would perform more robustly in an outdoor environment.

Specifically, a scale invariant feature transform (SIFT) approach addresses these

concerns directly by being resistant to scale, affine distortion, changes in 3D view-

point and illumination. In addition, an object typically only requires one template

or set of keys to be detected robustly.

2.3.2 SIFT Approach

Scale invariant feature transforms (SIFT) were first outlined in Lowe’s paper [8] and

then later expanded and improved on by Lowe and others [9][6]. The basic idea is to

generate features that are invariant to affine transforms and illumination changes.

These features (or keypoints) are extracted from a reference image of the object

being tracked and stored in a database. An object is detected by generating the

SIFT features of the scene image and finding a match in the database corresponding

to a reference object. Each object can be thought of as having a feature vector

associated with it and then trying to generalize the new vectors from the scene to

find the closest match in feature space. Many of the same approaches for speeding

up feature matching, that apply in pattern recognition, apply in this context as

well.[4]

As no modifications were made to the original algorithm defined by Lowe [9], only

8



2.3. VISION

a brief overview of the technique will be given here. The algorithm has four major

stages of computation to generate the keypoints. The first is the scale-space extrema

detection. In this stage, the difference-of-Gaussians is computed to be used to detect

areas of interest in the image from which to select keypoints. In this scale-space the

local maxima and minima are located by comparing the point of interest with its

8 neighbors and 18 neighbors in the scale above and below the current scale. The

second stage is the keypoint localization. Initial work on this stage simply placed the

keypoint at the location and scale of the central sample point, but newer methods

use a data fitting of the data in the surrounding area to give better results overall.

Part of this stage is a filtering step that removes any keypoints that are not strong or

stable enough for keypoint selection. The third stage orients the keypoints relative

to the local image information. By using the local image information, a keypoint can

be assigned an orientation that is rotationally independent of the scene. The fourth

stage generates the keypoint descriptor, which is a representation of the location and

orientation of the keypoint that removes the remaining variants, namely illumination

and 3D viewpoint. This final step is based on some research done on mammalian

vision systems, generating a key that is relatively invariant to affine transforms and

illumination.

The interesting results from the paper are in terms of number of keys and the

stability of detection under heavy rotation. As each object that is being tracked

can generate hundreds of keys, the uniqueness of the keys could be a concern. But,

the experiments in Lowe’s paper demonstrate an 80% repeatability in a database of

over 100000 keys. Under rotations greater than 30 degrees, the algorithm can select

the correct keys > 75%. Although, this may sound like a low percentage of correct

matches, each template can contain hundreds of keypoints, making the probability

high that a large number of keypoints will be matched against the database. In

our own experiments, shown in Figure 2.2, the algorithm performed better than

expected under large changes in both scale and rotation.
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2.3. VISION

(a) Minor Transform

(b) Major Scale, Minor Rotation

(c) Major Scale, Major Rotation

Figure 2.2: Examples of SIFT features being generated and matched in a variety of
scenarios
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Chapter 3

Navigation

3.1 Introduction

In previous work, the focus was on generating a proof-of-concept system that worked

in a controlled indoor environment [3]. In this type of environment, simple navi-

gation techniques can be used effectively [11]. However, extending some of these

techniques to an outdoor environment can be imposing or unreliable. The lack of

any landmarks, precludes the possibility of using an approach that would utilize

reference positions to compute its pose. Instead, different approaches to navigation

must be used to ensure the reliability and accuracy needed for the link acquisition

system outdoors. In the following sections, a Kalman filter based localization system

is described, as well as a proportional-derivative (PD) controller, which replaces a

simple reactive controller.

3.2 Kalman Filter

One of the most popular robot localization tools is the Kalman filter. This algorithm

allows for a computationally efficient way of estimating the current probability den-

sity, while at the same time minimizing the mean squared error. This filter allows

us to estimate the past, present and future of the state, even with a poorly defined
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3.2. KALMAN FILTER

model of the system. A brief review of the filter along with our derivations follows.

[12]

The filter addresses the general problem of estimating the state of a process

given a set of sensor measurements, their respective probability distributions and a

dynamic (or motion) model. The basic Kalman filter requires the state and measure-

ment equations be governed by linear stochastic difference equations. This means

that the state, x ∈ <n, can be represented by a linear equation of the form

xk = Axk−1 +Buk−1 + wk−1 (3.1)

with a measurement, z ∈ <m, of the form

zk = Hxk + vk (3.2)

In this formulation, the random variables wk−1 and vk represent the motion

model (or process) noise and measurement noise respectively. The variables are

represented by zero mean Gaussians and are considered independent of each other.

The normal probability distributions can be represent as follows

p(w) ∼ N(0, Q) (3.3)

p(v) ∼ N(0, R) (3.4)

where Q and R are the process noise and measurement noise covariance matrices,

respectively.

The n×n matrix A in (3.1) describes the relationship between the state at time

k − 1 and the current time k, where as the n × 1 matrix B relates the optional

control input to the current state. The matrix H relates the state to the current

measurement. All of the matrices could be dynamic from one time step to the next

and, in fact, in our final implementation, our noise covariances changed at each

measurement. For this linear process, the Kalman filter will estimate the state to

make the error covariance of the state estimate as minimal as theoretically possible.

However, the state and measurement are defined in terms of linear equations, thus

limiting the power of the general Kalman filter to linear process relationships.

12



3.2. KALMAN FILTER

Often in navigation or localization problems, the process model is not linear with

respect to the robot or sensors. This violates the constraints required by the regular

Kalman filter, making it useless for this application. Instead, a Kalman filter that

linearizes about the current mean and covariance can be used, which is referred to

as an extended Kalman filter (EKF). The original process definitions given above

have to be modified to allow for a non-linear equation to define both the state and

measurement data as follows

xk = f(xk−1, uk−1, wk−1) (3.5)

zk = h(xk, vk) (3.6)

as in (3.1) and (3.2), the random variables wk−1 and vk represent the noise distri-

butions of the process and measurement noise. Often in practice, these noise values

are unknown at each time step and therefore set to zero. Instead of the linear equa-

tions relating the state, measurements and optional control, it is now the non-linear

functions f and h that relate the previous time step to the current one.

Both the regular Kalman filter and the extended Kalman filter estimate the

process by using a form of feedback control. This feedback can also be described

in the two steps of the algorithm, time update and measurement update. The time

update equations are responsible for projecting the state forward in time based

solely on the dynamic model and control inputs, A and Buk−1 respectively from

(3.1). During the measurement update phase, the state estimate is corrected by

the measurements taken reflecting (3.2). This two cycle approach is often called

a predictor-corrector algorithm, with the time update predicting the next state

estimate and then allowing the measurement update to correct the estimate. The

derivation of the EKF equations results in the final result of a set of time update

equations

x̂−k = f(x̂k−1, uk−1, 0) (3.7)

P−k = AkPk−1A
T
k +WkQk−1W

T
k (3.8)

For a complete definition of notational reference, see Welch and Bishop [12].

During the time update phase, the state, x̂−k , and the covariance, P−k , estimates are

13



3.3. LOCALIZATION

projected forward based on the current (or past) state and the control input. The

set of measurement update equations are derived as

Kk = P−k H
T
k (HkP

−
k H

T
k + VkRkV

T
k )−1 (3.9)

x̂k = x̂−k +Kk(zk − h(x̂−k , 0)) (3.10)

Pk = (I −KkHk)P
−
k (3.11)

where the matrices above are defined as follows

A =
∂f

∂x
f(x̂k−1, uk−1, 0) (3.12)

W =
∂f

∂w
f(x̂k−1, uk−1, 0) (3.13)

H =
∂h

∂x
h(x̂k, 0) (3.14)

V =
∂h

∂v
h(x̂k, 0) (3.15)

and Q and R are as defined in (3.3) and (3.4). This fully defines the time and

measurement update steps of the EKF.

The EKF does lose some power because of the linearizion done in the derivation.

It only approximates the optimal error, making it a good estimate, but not provably

the best estimate. In addition, the distributions can no longer be considered normal.

3.3 Localization

During the link acquisition phase, each robot requires prior knowledge of the location

of the partner robot within some error tolerance. Each robot needs to be able to

localize itself in an outdoor environment within some radius of error to allow for the

partner robot to search for it. To accomplish this goal, a Kalman filter localization

approach was used, allowing the robot to navigate to the final waypoint within a

small error tolerance.[7][1]

In this case, each robot had a global positioning system (GPS) receiver and a

three axis orientation sensor, which allowed for the complete recovery of pose in <3.

Due to the absolute nature of both the GPS and orientation sensor, the kidnaped

14



3.3. LOCALIZATION

robot problem [5], which Kalman filter approaches cannot handle robustly, is not

an issue as the robot will always have an indication to its current location within

some error.

We can begin by describing the robot in terms of the global frame, which for

experiments was the north-east-down (NED) frame. For our navigation trials, we

assumed a locally level area, so that the Kalman filter derivation is only in two

dimensions, the north-east frame. From an arbitrary origin, chosen at run time, the

robot’s position and orientation are described by

~x =




x

y

θ


 (3.16)

The motion model of the robot can be describe by the velocity estimate, V ,

provided by the odometry and the angular velocity, ω, measured by the MicroStrain

3DMG. Both of these measurements are assumed to be corrupted by Gaussian noise.

Using this information, we can write the function, f(~x), which describes the time

update given in (3.7) as

f(x̂k−1, uk−1, 0) = ~xk−1 +




V cos θ∆t

V sin θ∆t

ω∆t


 (3.17)

which can be described as taking the last state and adding the translational and

rotational components to get the current state. Notice that this is the time up-

date, so if this was used without the measurement update, the error present in the

odometry model would cause the state error to grow without bound. This is where

the extended Kalman filter is required because of the non-linear nature of the time

update equations. To calculate the actual time update, the values for equations

(3.12), (3.13), (3.14) and (3.15) must be defined as

A =
∂f

∂x
=




1 0 −V sin θ∆t

0 1 V cos θ∆t

0 0 1


 (3.18)
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3.3. LOCALIZATION

which is the amount of change with respect to the state variables {x, y, θ}. For the

sensor measurements, the Jacobian W is

W =
∂f

∂w
=




∆t cos θ 0

∆t sin θ 0

0 ∆t


 (3.19)

which is simply the amount of change with respect to the process variables {V, ω}.
These are not the same as the measurement variables, which are dealt with later.

One of the interesting side effects of directly measuring the state using sensors

(instead of measuring a different entity and then deriving the state) is that the

measurement function becomes trivially

zk = h(xk, 0) = xk (3.20)

From this result, it is easy to see that the Jacobians for both H and V are both

the identity matrix, because both the state, xk and the measurement variables, vk are

equal. The only matrices left to define are the Q and R matrices. These represent,

as in (3.3) and (3.4), the covariance matrices of the process and measurement noise,

respectively. As pointed out earlier, all of these matrices do not have to remain

constant for the life of the filter, in fact, they may change from time step to time

step. This is the case for our R matrix, which we define using both empirical

results and direct measurements. The Q matrix is the angular velocity, ω, and

linear velocity, V , covariance, which can be measured directly using the three axis

orientation sensor and the on-board odometer. The manufacturer of the orientation

sensor specifies a standard deviation of 1 degree per second or 0.0174 radians per

second for angular velocity. The robot platform does not specific a tolerance for the

linear velocity measurement, so this was fixed empirically at 0.08 m/s. This results

in a Q matrix defined by

Q =


 0.082 0

0 0.01742


 (3.21)

which was left fixed for the entire trial. The R matrix was slightly different, in

that the GPS receiver used could measure the standard deviation directly, using
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3.4. CONTROLLER

a proprietary algorithm built into the unit. The orientation sensor was used to

measure θ with respect to the NE frame, but it does not provide the tolerance live

as did the GPS receiver. The manufacturer’s specification defined 5 degrees or 0.087

radians of accuracy over the full range of the unit giving a R matrix defined by

R =




GPSv 0 0

0 GPSh 0

0 0 0.0872


 (3.22)

where GPSv and GPSh is the measured variance in the x and y world frame at

run-time, as measured by the Garmin 18USB unit.

3.4 Controller

Providing a reliable way of migrating the robot to its objective waypoint is an

important step in providing some predictable error tolerance at the final waypoint.

The prior work had used a simple reactive controller that allowed the robot to follow

walls in an indoor environment. For our outdoor environment, a controller had to

be added that provided better reliability than a reactive controller could provide.

This work was based heavily on previous work in the lab on controllers [10].

Since, our robots are of the differential drive variety, we assume the kinematic

model is of the form 


ẋ

ẏ

θ̇


 =




v(t) cos θ

v(t) sin θ

ω


 (3.23)

If we assume that v(t) is constant, over the small interval between control inputs,

we can derive

ÿ = v cos θθ̇ = ωv cos θ ≡ u (3.24)

Since, we can place the origin at any point, we assume the origin is on the target

waypoint. Instead of creating a smooth path from the robot’s starting location to

the destination, we choose a straight line as the desired path. Assuming that both

the starting and objective points lie on the x axis, we can generate an error term
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3.4. CONTROLLER

as the distance off the x axis, e = −y. From which we can design a proportional-

differential (PD) controller as

u = −kdẏ − kpy (3.25)

where kd and kp are the differential and proportional gain constants, respectively.

The parameter that we want to adjust is the angular velocity ω. By modeling

the controller as a second-order system, we need to regular the acceleration term,

ÿ. Only by choosing the second-derivative as the control input, u, can we get an

expression directly for ω. Substituting (3.23) in (3.25) then solving for ω with (3.24),

we can obtain

ω = −kd tan θ − kpy

v cos θ
(3.26)

Instead of varying both gains independently, the performance of the controller

was only measured under critically damped behavior, i.e., kd = 2
√
kp. Using [10]

as a starting point, kp was initially set to 1.2. This value did not perform on the

mobile robot as well as on the wheelchair platform, due to obvious differences. Via

experiments on the robot, a better gain (kp = 0.2) was selected that drove the robot

in a “predictable” manner as defined by the human observers.

One of the earlier assumptions required the initial and objective waypoints to

lay along the x axis. This would force all of the waypoints to lie along the east-west

axis in the world frame, W . Instead, during the initial navigation phase, the vector

between the initial and final positions is computed and used as the new x axis. We

can then rotate the current state as estimated by the Kalman filter in the W frame

into the controller frame, C, where the origin is located at the objective waypoint

and the x axis intersects the initial position of the robot. We can compute the

rotation matrix as follows

R1 =




cos θ sin θ 0

− sin θ cos θ 0

0 0 1


 (3.27)

where θ is computed by taking the initial and objective waypoints, {x1, x2 ∈ <2}

θ = tan−1

[
x1(2)− x2(2)

x1(1)− x2(1)

]
(3.28)
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3.5. WAYPOINT TRIALS

then, by transforming the measured state, ~x from the world frame, W , to the control

frame, C by

xc = R1~x (3.29)

xc(3) = ~x(3)− θ (3.30)

which results in the robot initially facing down the x axis toward the origin.

3.5 Waypoint Trials

Our trials include a course made up of GPS waypoints for the robots to follow,

identified (for humans) by orange cones. A robot would traverse a loop attempting

to stop on the objective waypoints at each leg of the course. The error would be

determined by the distance from the orange cone that the robot stopped and then

rotated to the next leg of the course.

In experimental trials of the Kalman filter, we were able to get the robots to get

within 2 meters of a waypoint. In Figure 3.1, the robot can be seen approaching

a waypoint (orange cone) from the left, traveling approximately 30-40 meters. In

the trial pictured, the robot stops within a meter of the target, rotates to a new

objective waypoint and travels toward it on the right.

As shown in Figure 3.2, the covariance matrix decreases over time, estimating the

state while minimizing the mean squared error. This data is from a trial conducted

outside traveling from one GPS waypoint to another approximately 38 meters away.

It is interesting to note that during the time update portion of the Kalman filter, the

covariance for both the x and y increase, only to be corrected by the measurement

update phase.
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3.5. WAYPOINT TRIALS

(a) Incoming (b) Turning (c) Departing

Figure 3.1: The robot travels toward the objective waypoint, stops, rotates and then
continues toward a second waypoint

(a) (b)

Figure 3.2: The covariance of both the x and y pose decrease over time. The
“sawtooth” effect demonstrates periods where only the time update is being used.
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Chapter 4

Discussion and Future Work

The objective of this work was to investigate some deployment strategies for hybrid

FSO/RF networks in an outdoor environment. By using a high zoom camera coupled

with a robust tracking algorithm, we were able to locate a link partner using only one

template over a wide variety of poses and illuminations. By fusing sensor data from

multiple sources, we were able to use a Kalman filter to navigate our robot platforms

to target waypoints with a reasonable error tolerance. By demonstrating these

technologies, we can clearly see that an outdoor deployment of a hybrid network

of mobile robot teams is feasible. To combined these technologies in a production

platform, significant future work is needed.

In our navigation framework, we assumed a locally flat area making the Kalman

filter derivation two dimensional. This restriction is slightly unrealistic, as most

terrain has some elevation associated with it, and the vision/FSO system is capable

of connecting at a large variety of angles. This could be extended to three dimen-

sions quite easily, as most of the derivation would be the same. This would allow

deployments that connected valleys by creating a link over the ridge.

Although the SIFT approach claims to be illumination invariant, separate tests

in our lab have shown that it is quite sensitive to large changes in illumination or

contrast. Further research into methods for combating illumination disparity should

be investigated.

The work laid out in this paper provides all of the pieces for a strong outdoor
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implementation of a hybrid network. Utilizing the waypoint navigation to position

the robots at the objective location, then searching for the link partner with SIFT

and finally aligning the FSO heads is a daunting integration task. The integration

of these pieces and production trials is the source of ongoing research in the coming

months.
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