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Abstract— We describe an inexpensive autonomous robot
capable of navigating previously unseen data centers and
monitoring key metrics such as air temperature1. The robot
provides real-time navigation and sensor data to commercial
IBM software, thereby enabling real-time generation of the data
center layout, a thermal map and other visualizations of energy
dynamics. Once it has mapped a data center, the robot can
efficiently monitor it for hot spots and other anomalies using
intelligent sampling. We demonstrate the robot’s effectiveness
via experimental studies from two production data centers.

I. INTRODUCTION

Over time, data centers around the world are consuming

ever more energy, with those in the US now responsible

for an estimated 2% of the nation’s electricity budget [1],

[2]. Today, a single data center rack can be packed with

equipment requiring more than 30 kilowatts (kW), ten times

what it had been a few years ago [3]. All of the power

required to run IT equipment is ultimately dissipated as heat,

and a comparable amount of power may be required by

the cooling system to remove it. Thus efficient data center

cooling is of paramount importance.
A common contributor to data center (DC) cooling inef-

ficiency is over-aggressive cooling, which can result from

ignorance of the temperature distribution or from a lack of

understanding of how to adjust the cooling such that it is

applied evenly, so that all equipment receives just enough

cooling, but not too much. The first problem is often ad-

dressed by instrumenting the DC with a set of fixed sensors.

Previous work [4] has described an effective solution to the

second problem, which entails a one-time spatially dense

temperature scan of the DC performed by a human pushing

around a mobile sensing platform. The dense scan is used in

conjunction with a hand-entered map of the DC to provide

recommendations on how to better arrange equipment in the

center so as to even out the temperature distribution, reducing

cooling costs by an average of 10% while ensuring that

equipment runs at safe operating temperatures. In subsequent

work [5], the same authors address both issues by combining

the one-time initial scan with statically placed sensors.
While the one-time scan approach has proven effective in

many data centers, a barrier to its broader deployment is
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Fig. 1. The data center mapping and monitoring robot.

the manual labor and expense of pushing a sensing station

around, which can take several days for a large data center

(50K sq ft or more). Moreover, given that the workload

distribution and the layout may vary over time, it can be

advantageous to run the scan frequently.

In order to enable frequent, low-cost DC monitoring, we

have developed the fully autonomous robotic platform for

navigating, mapping and sensing key environmental data.

The robot, shown in Figure 1, has many advantages over

previous techniques. It can navigate a DC it has never seen

before, simultaneously providing a coarse mapping of the

navigable area and providing updates to the temperature map,

which are then displayed in real time using a commercial

asset management and visualization tool from IBM. The

robot provides temperature scans that are more temporally

dense than those provided by the mobile sensing station

used in earlier work [4], [5] and more spatially dense than

can be provided by fixed sensors. Unlike fixed sensors,

which are usually mounted on equipment, the robot can

sense points in free space. In large data centers that it has

already mapped, the robot can selectively choose locations

at which to collect sensor readings, so as to maximize

information gain while minimizing collection time. Finally,

a robotic sensing platform such as ours enables one to easily

and cheaply deploy new sensors or sensor types, avoiding

expensive installation and configuration costs.

II. RELATED WORK

Several other researchers have discussed the general prob-

lem of efficient monitoring in DC environments. Of special



note is the work of Bash et al. [6], who also address selective

sampling of sensor locations in a DC. Their technique

generates a best set of fixed sensor locations based upon

the individual influence of Computer Room Air Conditioning

(CRAC) units, as opposed to our technique, which is applied

to mobile sensing and hence complements static instrumen-

tation. Also of note is work by Patel et al. [7], [8], who

describe automated approaches to monitoring and modeling

DC thermal and energy characteristics, and mention robotic

monitoring, but do not describe its design or function in

detail.

Other researchers have explored robotic approaches to

monitoring data in environments other than data centers.

Pon et al. [9] describe a cable-based robot for monitor-

ing environmental data in rivers and forests. Stealey et al.

[10] extend that work, introducing algorithms for adaptively

sampling spatial phenomena [11] that resemble the adaptive

sampling strategies used by our robot. Guestrin et al. [12] use

the submodularity concept to choose near-optimal sensing

paths for multiple robots. While our work shares with these

efforts the general goal of efficiently mapping environmental

phenomena, their robotic implementations focus on sensing

large, unobstructed volumes in rivers or forest canopies. In

contrast, our approach incorporates the physical constraints

presented by DCs and leverages the domain-specific DC

characteristics to provide a targeted end-to-end solution.

III. DESIGN AND IMPLEMENTATION

The primary design objective for the robot is to support

frequent, low-cost monitoring of key environmental metrics

in a data center. We achieve low cost by

• replacing human labor with a robot;

• constructing the robot from low-cost materials (less than

$700US in total), so that it would be affordable even for

modest-sized data centers; and

• endowing the robot with the ability to discover and

map the navigable regions of a data center it has never

seen before, thereby eliminating the need for humans

to provide the robot with a DC layout (which can take

several days of labor even in modest-sized data centers).

Another important design criterion for the robot is that it

provide sensor data that are most relevant in the data center

environment. While we have limited the first deployment to

include temperature sensors only, natural next steps include

adding air flow and humidity sensors. Since these quantities

typically vary vertically, we must provide sensing capabilities

at several different heights.

Finally, to help data center administrators grasp immedi-

ately the usefulness and practicality of the robot, we designed

it to provide realtime feedback to a state-of-the-art DC

monitoring and asset management tool: IBM’s Maximo for

Energy Optimization (MEO). This allows the mapping and

monitoring data to be visualized moment-by-moment as it

is collected by the robot, and propagated immediately to

MEO’s built-in analytics, such as dynamic cooling efficiency

analysis, cooling zone analysis, and hot spot detection.

A. Platform

The data center robot was developed on top of the iRobot

Create robotic research platform. Its robust, low-cost mobile

chassis provides a high-level interface for motor control,

odometry and a limited number of on-board sensors through

a serial connection. The on-board capabilities of the Create

platform were augmented with a USB webcam, an off-the-

shelf laptop computer and a custom thermocouple interface

for sensing temperature. All computation was performed on

a netbook with a 1.6 GHz Atom processor and 1 GB of

memory, with the exception of the Create’s on-board 8-bit

processor for motion commands. The thermocouples were

attached to a 6 1/2 foot tall extruded aluminum pole mounted

vertically to the robot base. The sensors were placed at 1 foot

intervals to provide temperature readings at different heights,

all the way up to just above the top of the 76-inch racks.

B. Vision

The robot’s vision system was designed to exploit the grid-

like structure of the tiles in a DC floor. It uses an inexpensive

Logitech C905 webcam mounted approximately 30 inches

above the floor to image the tile ahead. From the image

it extracts the orientation of the robot relative to the floor

grid and its location within the current tile. Additionally,

The robot uses the vision subsystem to detect different tile

structures such as plain and perforated tiles, inherent to

DC design. There are certain challenges associated with the

vision process due to extraneous lines introduced by boxes

and cabinets, different patterns exhibited by perforated tiles

and the occlusion of some tile borders by DC equipment.

Our approach, as presented here, addresses these challenges

to provide a robust vision-based DC mapping, positioning

and navigation technique for autonomous robot operation.

The basic mode of operation is for the robot to traverse the

DC, stopping at each tile to take temperature readings. Yet,

due to imprecise mechanicals and surface irregularities, sole

reliance on odometry is not adequate [13]. After stopping in a

tile the robot grabs a 320x240 color image and processes it to

determine its actual pose, whether the next tile is visitable or

blocked, and its tile type (i.e., perforated or plain). The image

processing takes place in four steps: (a) grid line finding, (b)

robot pose determination, (c) visitability check, and (d) tile

type detection. These steps are highlighted in Fig. 2, and

further described below.

Grid Line Finding: This first step pre-emphasizes borders

(and suppresses perforations) using a rectangular min filter.

It then finds Sobel edges above a threshold (Fig. 2(a))

and groups them into 4 major directions. A connected

component analysis is done to remove small edges as well

as insufficiently elongated regions. Edge groups are then

approximated by straight lines and re-projected onto a flat

floor using the calibrated camera geometry.

Robot Pose Determination: The angles of the detected lines

are histogrammed (modulo 90◦) and the peak of the his-

togram is used to determine the overall grid and robot orien-

tation. The system then removes all lines that are not close



(a) Grid line finding (b) Robot pose determination

(c) Visitability check (d) Tile type detection

Fig. 2. The vision process overview.

to the inferred grid orientation and projects the remainder

along the x and y axes. Using one or two major peaks in

each projection, the system determines the boundaries of the

tile ahead and the robot’s relative offset from the tile center.

For example, the two histogram peaks in Fig. 2(b) clearly

identify the lower left corner and the boundaries of a tile.

Visitability Check: At this point, the image boundaries of

the next tile have been established, so the system remaps the

corresponding portion of the input image to a medium-sized

(104×104) floor-based representation. The Sobel edge finder

is again applied and the periphery is checked for largely

continuous edge energy. Lack of a clearly bounded edge on

some side is take as evidence of overlapping obstruction.

Fig. 2(c) shows such an example, where the projected tile

boundary is obstructed by a rack, and thus the tile is marked

as blocked. The system also checks the center portion of the

tile for the numbers of edge pixels and changes in intensity

to determine whether a tile is visitable or not.

Tile Type Detection: In the case of perforated tiles, the edges

in the center of a tile are simply due to perforations used

for venting cool air into the data center, and the robot can

safely cross such a tile. To detect perforated tiles (Fig. 2(d)),

the system first attempts to normalize for inter-tile intensity

variations by comparing each pixel to the average in a

small (17 × 17) surrounding region. It then computes the

average and standard deviation of this “dark energy” to

make sure the potential perforations are roughly symmetric

and evenly distributed. As a final test the system re-centers

and further subsamples the tile image to create a small

(11× 11) “signature image”. This signature image is rotated

by 90◦, 180◦, and 270◦ and compared with the original. The

maximum pixel difference with any version is then checked

to assure that the pattern is symmetric, indicating perforation

rather than an obstruction.

The robot’s vision system has certain advantages relative

to more sophisticated techniques such as visual SLAM

(Simultaneous Location and Mapping). First, since the robot

only pays attention to the floor grid, it is insensitive to re-

arrangements of the racks and furniture. Second, it directly

observes tiles and classifies them accurately as traversable or

blocked, and perforated or plain. With visual SLAM, there is

no guarantee that obstructions would always generate salient

features that enabled such classification.

C. Planning, Localization and Mapping

The resulting vision system is very robust with respect

to contrast, illumination and partial occlusion of the grid.

However, it only provides a differential pose relative to a

tile, rather than a full robot pose with respect to the room.

Odometry must be used to keep track of tile crossings

and major rotations (e.g. 90 degree re-orientations). For

robot global localization, we combined these differential

visual observations with odometric feedback from the Create

platform using an Extended Kalman Filter (EKF) [14]. The

global reference frame is defined by the starting location

and orientation. The rotation and translation of the frame

are handled later in the analytics software. We assume

that the DC forms a regular grid. While these simplifying

assumptions do not solve the “kidnapped robot problem”[14],

the lower-cost and simplicity of the system outweigh the

added benefits of a complete SLAM solution.

Given the current tile pose in the global reference frame,

the map containing the tile type (perforated or not) and tile

obstruction (occluded or not) must be created. In order to

fully explore the data center layout, we use a frontier-based

exploration system [15]. The exploration was performed by

navigating the robot to the nearest unvisited location using

the A* search heuristic [16]. In the simulations of section V,

this exploration algorithm visited only 10% more tiles than

the number of visitable tiles in the DC.

D. Thermal Monitoring

The temperature sensors are a 40-gauge K-type ther-

mocouple that has approximately a 3-second response to

temperature changes. The sensors are placed starting just

a few inches above the ground and then at six one foot

increments to give a reasonably fine-grained measurement

of the temperature stratification at different heights. The

electronics circuit board contains circuitry that converts the

thermocouple sensor voltage into a scaled voltage, which is

sampled by an analog-digital converter built into a microcon-

troller. The microcontroller samples each sensor in sequence

and transmits the data for subsequent storage and analysis.

E. Product Integration

As the robot incrementally maps and monitors the data

center, it wirelessly sends realtime updates to MEO, which

graphically displays a continually growing layout and ther-

mal map. MEO uses a different graphic to represent each

tile type as it is classified by the robot: either standard

(non-perforated), perforated, blocked or unknown. Since the

robot does not distinguish the nature of the objects that are

resident on occupied (and therefore obstructed) tiles, the



Fig. 3. A hot/cold spot map from the Southbury data center in MEO. Hot
air is spilling around the sides of racks at the end of the left hand cold aisle
creating two hot spots. The red hot spots indicate that temperatures exceeds
the high temperature threshold in the vicinity of the air inlets of equipment.

result is a somewhat coarse but still useful and recognizable

representation of the data center.

If MEO has already been populated with the DC asset

information, then it can display this layout and simply update

the temperature map as it is discovered incrementally by the

robot. In this case, the data collected by the robot can be fed

to MEO’s built-in analytics, and the results can be rendered

graphically by MEO. One example is MEO’s hot spot

analysis and visualization capability. Since certain regions of

the data center are more sensitive to high temperatures than

others (for example the air inlets of IT equipment, as opposed

to the exhaust), MEO computes differential high-temperature

thresholds across the data center and highlights regions that

exceed the local threshold, as illustrated in Figure 3. MEO’s

hot and cold spot detection is a key starting point for effective

adaptive cooling [17].

IV. FIELD DEPLOYMENTS

We conducted two sets of experimental deployments of

the robot in two separate production DCs. The first set of

experiments was performed at a research DC in Hawthorne,

N.Y. This research DC presented many interesting challenges

not typically found at IBM’s non-research DCs due to

highly-frequent reconfiguration and provisioning operations.

Perhaps most importantly, this DC used many different types

of perforated tiles, making it an ideal site for training the

robot’s tile classifier. We conducted dozens of experimental

runs in this DC to tune the vision and localization algorithms

and to test the MEO integration.

We mention two of the more interesting lessons learned

from these experimental runs: In the early days of the vision

tuning we thought that it would be sufficient to look just for

one tile boundary and a clear tile ahead. However, with just

single edge detection, the robot was confusing certain white

power distribution units (PDUs) with clear non-perforated

tiles. Later on, the robot started to mistake a variety of

different perforated tiles with few exemplars for obstacles

and we realized that symmetry checking need to be an

important part of tile type detection.

Our experiments demonstrated the robustness of the robot

in detecting and navigating through a variety of obstacles

that can be encountered in DCs, the reliability of localization

with dynamically-varying DC layouts, and the resilience of

our vision system in classifying a range of different tile

configurations. Overall, this Hawthorne DC comprised 4800

square feet, contained 220 visitable tiles and was completely

scanned in 46 minutes.

The second of our deployments was at an enterprise DC

in Southbury, CT. This DC was much more static, tiles were

relatively uniform, and obstructions were limited in number.

Although the tiles in this DC differed substantially from

those of the research DC, with different colors, perforation

patterns and tile edges, the robot successfully scanned this

data center on its first run and in several follow-up runs. This

DC comprised 960 square feet, contained 115 visitable tiles

and our initial scan was completed in 28 minutes.

V. SELECTIVE SAMPLING: ALGORITHM, SIMULATION

AND PHYSICAL EXPERIMENTS

In small DCs such as those used in field deployments,

complete scans of every location will complete in a reason-

able amount of time. However, in large DCs, complete dense

scans could take days to complete, rendering continuous

monitoring impractical. A dense scan over a long time period

could have inherent temporal variations, reducing the scan’s

usability. Moreover, in many enterprise DCs, administrative

constraints would limit the duration for actively scanning

the DC. Thus, in lieu of repeat dense scans, it is desirable

to judiciously select a number of informative points that

accurately represent the thermal profile of the entire DC.

A. Selective Sampling with Gaussian Processes

The goal of selective sampling is to accurately model

the DC temperature profile with a reduced set of most

informative sensing locations. To derive the overall profile

from selected samples, we used an approach based on non-

parametric models to represent the DC profile as Gaussian

Processes [18]. Using this class of probabilistic models,

the uncertainty of our predictions can be quantified using

the measurements already taken. These uncertainty estimates

allow us to select additional sensing locations to minimize

the error in the predicted profile. Computing the optimal

locations is non-trivial and is dependent on the metric used

to quantify the uncertainty of adding sensing locations. One

naive approach minimizes the uncertainty (variance) of the

measurement locations by greedily choosing the locations

that reduce the variance most. Greedy variance minimization

has been shown to only indirectly improve the error of the

fitted function. In our work, we used the mutual information

(MI) criterion proposed by Guestrin et al. [11] to determine

a near-optimal subset of sensing locations, which we further

describe below.

Our environment has discrete sensing locations, one per

floor tile. The set of sensed locations, A, is the set of

locations already measured by the robot. Our objective is

to maximize the change in mutual information by adding a

new sensing location. More formally, we wish to maximize:

MI(A ∪ y)−MI(A) = H(y|A)−H(y|Ā) (1)



Fig. 4. Root Mean Square (RMS) errors for different sparse sampling
strategies and different numbers of sensing locations

where H(x|z) is the conditional entropy and y is the pro-

posed sensing location. This is done iteratively by adding a

sensing location to the set A, which maximizes Equation 1.

Computing this conditional entropy is simplified by the

choice of Gaussian Processes. Notice that the computation

includes the conditional entropy at unobserved locations as

well as observed locations. This MI criterion measures the

reduction in uncertainty at unobserved locations in contrast

with variance minimization, which only looks at the condi-

tional entropy given the sensed locations.

Specifically, we learn a squared exponential covariance

function with automatic relevance determination (ARD) from

the data in the dense scan using marginal likelihood maxi-

mization [18]. This covariance function provides a different

hyper-parameter for each dimension allowing x and y di-

mensions to have distinct weights in the distance function.

B. Simulations

We simulated the sensing and movement of the robotic

system to evaluate the speed and accuracy of reconstructing

the thermal profile using dense and sparse scans. The thermal

profile was constructed as an arbitrary function with Gaus-

sian hotspots and Gaussian noise at each sampled location.

An actual medium-size DC in Zurich, Switzerland containing

approximately 500 tiles was used for the evaluations. For

each experiment, a complete dense scan was performed, the

hyper-parameters of the Gaussian Process regression were

learned, and then k additional measurements were allowed.

These k additional measurements were used, in conjunction

with the previously learned hyper-parameters, to create an

approximation of the thermal profile. The regression and

the original function were compared on a regular grid of

points and the root mean squared error is reported. Random

algorithms were run 5 times for each value of k, with the

mean and standard deviation reported.

Results for three algorithms are shown in Fig. 4. The first

randomly selects sensing locations. Given k additional sens-

ing opportunities, the algorithm selects k points at random

from all possible sensing locations. The second algorithm is
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(c) Uncertainty

Fig. 5. The layout for the production data center with the measured thermal
profile function approximation and the uncertainty of this estimate

an approximate uniform coverage algorithm. It picks k “well

separated” points from amongst the dense set of candidates,

where the radius used to determine what constitutes a well

separated set is obtained from disk packing considerations.

The third algorithm selects sensing points according to the

mutual information criterion described previously. The only

information used from the dense scan in the sparse scan

is the hyper-parameters defining the Gaussian Process and

the possible set of sensing locations. As seen in the figure,

picking just 15 sensing locations using MI gives an RMS

error that is consistently less than the error for both uniform

and random sampling for any number of samples.

C. Physical Experiments

We also validated our selective sampling strategy with

actual experiments in the Southbury DC. Here we first

configured the robot to create a complete dense scan of the

entire DC. The temperature profile acquired from this initial

scan–interpolated using Gaussian Process regression–and the

associated uncertainty at different DC locations are shown

in Fig. 5(b) and 5(c) respectively. Notice the areas of high



uncertainty correspond to the locations of the server racks

and equipment in the DC (Fig. 5(a)), where no measurements

could be taken.

After the initial scan, we configured the robot to operate in

“selective sampling mode”, where it computed 10 selective

sensing locations, and traversed a path along these 10 points

to quickly collect temperature samples at these specific

locations. This path is computed by greedily navigating to

the closest sampling location using A* search, measuring the

temperature, and repeating the process. Then, we again used

Gaussian Process regression to model the entire DC thermal

profile by only using the sensor readings from the selected

10 points.

Similar to the simulations, we used the dense scan in-

formation as the ground truth and compared the selective

sampling interpolation with this to evaluate our accuracy.

We repeated the same experiment twice during different

operating periods of the DC. The RMS errors achieved with

each of the two sampling evaluations are 1.72 and 2.27◦C,

respectively, where part of this error is also attributed the

inherent temporal thermal variations present in the physical

environment. These results show, in an actual enterprise

DC setting, that the robot can effectively model entire DC

thermal profiles with reasonable accuracy using selective

sampling. It is worth noting that in this evaluation it took

the robot only 5 minutes of monitoring to collect the sparse

sensing information and to map the entire DC thermal profile.

VI. CONCLUSION AND FUTURE WORK

We have described a fully autonomous, low cost, and

robust mobile robotic platform for navigating and mapping

an unknown data center while simultaneously monitoring

the environment. We have integrated the robot into Max-

imo for Energy Optimization, an enterprise-level asset and

data center management product from IBM that provides

visualizations of energy dynamics and other analytical tools

that support effective energy management. In this capacity,

the robot (1) provides spatially-dense data center scans at

lower cost than human-aided methods, enabling them to

be run much more frequently, and (2) responds quickly to

dynamically-emerging cooling problems that could lead to

equipment failure or wasteful use of energy.

In designing the robot, we exploited data center domain

characteristics such as tile-based floor structures to enable

a low-cost and robust vision-based navigation and tile de-

tection system. Our data center experiments showed that

frontier-based exploration can complete a full scan with

only 10% more tile visits than there are visitable tiles.

We have validated the robot’s operation in two production

data centers, one of which had never been seen before.

In both cases, the robot successfully scanned and provided

a complete thermal and layout map in less than an hour.

To address potential time constraints in larger data center

scans, we introduced a selective sampling approach based

on mutual information. Our evaluations with both full-scale

simulations and field experiments on multiple data center

layouts showed that such intelligent selective sampling can

keep scanning times to a small fraction of the time for a full

scan and achieve DC temperature profiles with errors on the

order of 2◦C or less.

In the near future, we will be extending the platform

to include air flow and humidity sensors. We will also be

taking the robot to some of the largest IBM data centers

where we will do larger scale testing of our MI-based

selective sampling. We will evaluate the effectiveness of

the naive incremental path planning algorithm we currently

use for selective sampling and explore alternatives, such as

those introduced by Guestrin et al. [12], or more traditional

traveling salesman problem approximations.
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