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Very little work 
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evaluate the maximum



Sparse Sampling
[Kearns, et al 1999]

• An epsilon-optimal planning algorithm for 
discounted MDPs.

• Number of samples independent of state 
space size!

• Requires too many samples!
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Can we use ideas from the 
exploration/exploitation problem to 

better direct our search?



UCB
[Auer, et al 2002]

• An algorithm for efficient learning in the 
bandit domain

• Fixed number of discrete actions with 
bounded support

• Choose an arm greedily according to the 
following rule:
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UCT
[Kocsis, Szepesvári 2006] 

• Upper Confidence applied to Trees

• Takes the UCB algorithm and extends it to 
the full MDP domain 

• Build a tree similar to SS, but instead of 
doing a breadth first search perform a depth 
first search directed by a UCB algorithm at 
each node



UCT, cont...
[Kocsis, Szepesvári 2006] 
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HOO 
[Bubeck, et al 2008]

• UCT is still restricted to discrete states and 
actions

• HOO (hierarchical optimistic optimization) 
provides similar guarantees to UCB in “well-
behaved” continuous bandit problems

• The idea is simple, divide the action space up 
(similar to a KD-tree), keep track of returns 
in these volumes, provide exploration 
bonuses for both number of samples and 
size of each subdivision 



HOO, cont... 
[Bubeck, et al 2008]

• Choose an arm greedily with respect to the 
following:

• Very similar to UCB except the spatial term 
at the end

• The intuition is that arms with large volumes 
and few samples are unknown, but small 
volumes and lots of samples are well known
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following:
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. . . . . .

Introduction to bandits Lipschitz optimization Bandits in general spaces Application to planning

Example in 1d

rt ∼ B(f (xt)) a Bernoulli distribution with parameter f (xt)

Resulting tree at time n = 1000 and at n = 10000.

Thanks to Remi Munos

HOO, cont... 
[Bubeck, et al 2008]



UCB vs HOO



HOOT

• Our idea is to replace UCB in UCT with 
HOO, so that we can work directly in the 
continuous action space

• This leads to our algorithm HOO applied to 
Trees (HOOT)

• The algorithm is exactly the same as UCT, 
but instead of using UCB at each internal 
node, we maintain a HOO tree



Empirical Results

 40

 60

 80

 100

 120

 140

 160

 180

 200

 100  1000  10000

To
ta

l R
ew

ar
d

Samples per Planning Step (logscale)

Double Integrator - 1D

UCT 5A
UCT 11A
UCT 15A

HOOT
 165

 170

 175

 180

 185

 190

 195

 0  10  20  30  40  50

To
ta

l R
ew

ar
d

Number of Discrete Actions

D-Double Integrator - 1D

HOOT
UCT

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 1  2  3  4

To
ta

l R
ew

ar
d

Number of Action Dimensions

D-Double Integrator

HOOT
UCT 5

UCT 10
UCT 20



Empirical Results

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200

 100  1000  10000

To
ta

l R
ew

ar
d

Samples per Planning Step (logscale)

Bicycle - 0.02cm

UCT 5A
UCT 10A
UCT 20A

HOOT

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200

 3  5  7  9  11  13  15
To

ta
l R

ew
ar

d
Number of Discretizations per Action Dimension

Bicycle - 0.02cm

HOOT
UCT



Future Work

• Using HOO to optimize the n-step 
sequence of actions as an n-dimensional 
space

• Extend to continuous state spaces by a 
weighted interpolation between 
representative HOO trees



Summary

• Choosing action discretizations is non-trival!

• If you have a distance metric and your value 
function is locally smooth, use HOOT not 
vanilla UCT!



Thanks!


