
Towards Data Center Self-Diagnosis Using a Mobile Robot

Jonathan Lenchner
IBM Thomas J Watson

Research Center
Hawthorne, NY 10532

lenchner@us.ibm.com

Canturk Isci
IBM Thomas J Watson

Research Center
Hawthorne, NY 10532

canturk@us.ibm.com

Jeffrey O. Kephart
IBM Thomas J Watson

Research Center
Hawthorne, NY 10532

kephart@us.ibm.com
Christopher Mansley

Dept. of Computer Science
Rutgers University,

Piscataway, NJ 08854
cmansley@cs.rutgers.edu

Jonathan Connell
IBM Thomas J Watson

Research Center
Hawthorne, NY 10532

jconnell@us.ibm.com

Suzanne McIntosh
IBM Thomas J Watson

Research Center
Hawthorne, NY 10532

skranjac@us.ibm.com

ABSTRACT
We describe an inexpensive robot that serves as a physi-
cal autonomic element, capable of navigating, mapping and
monitoring data centers with little or no human involve-
ment, even ones that it has never seen before. Through a
series of real experiments and simulations, we establish that
the robot is sufficiently accurate, efficient and robust to be
of practical benefit in real data center environments. We
demonstrate how the robot’s integration with Maximo for
Energy Optimization, a commercial data center energy man-
agement product, supports autonomic management at the
level of the data center as a whole, particularly self-diagnosis
of emerging thermal problems.

ACM Classification Keywords: I.2.9 Computing Method-
ologies, Artificial Intelligence, Robotics.

General Terms: Algorithms, Design, Management, Per-
formance, Reliability.

Author Keywords: Autonomous systems, self-managing,
energy efficiency, data centers, mobile robots.

1. INTRODUCTION
Over time, data centers around the world are consuming

ever more energy, with those in the US now responsible for
an estimated 2% of the nation’s electricity budget [12, 26].
Recognizing that cooling is a significant contributor to en-
ergy consumption, data center operators are beginning to
tolerate higher operating temperatures. While this practice
saves substantial amounts of energy, running closer to al-
lowable operating temperature limits increases the risk that
temperature problems will result in equipment failures that
wipe out the financial benefits of saving energy. Vigilance is
needed, and increasingly that vigilance is being provided by
data center energy management software that monitors data
center temperatures and alerts operators when troublesome
hot spots develop.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICAC’11, June 14–18, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0607-2/11/06 ...$10.00.

In previous work [7, 6] we have painted a picture of the
data center as a computing environment with the capac-
ity for self-regulation, populated with elements represent-
ing physical components such as power distribution units
and air conditioners that interact with one another and
with software elements such as workload managers. In this
paper, we describe a truly physical autonomic element—a
robot that navigates the data center, mapping its layout
and monitoring its temperature and other quantities of in-
terest with little to no human assistance. The robot is in-
tegrated into state-of-the art enterprise energy management
software in such a way that, as thermal anomalies arise in
the data center (such as the occurrence of areas of under-
and over-provisioned cooling) the robot can automatically
be dispatched to investigate these regions to provide evi-
dence regarding suspected causes of the anomalies and fa-
cilitate an automatic response.

There are three main contributions of this work. First, we
describe a full-prototype implementation of the autonomous
data center robot that is deployed and tested in several pro-
duction data centers. Second, we describe several trade-offs
and improvements in robot design and data center monitor-
ing, and provide quantitative evaluations for different de-
sign choices. We evaluate different navigation approaches
and their trade-offs with different data center layout config-
urations. We propose and evaluate several novel techniques
for improving the robot’s monitoring coverage, inlet tem-
perature sampling fidelity, tile detection accuracy, and ad-
dressing energy and scanning time considerations. Third,
we demonstrate the integration of robot operation to an
enterprise-level data center management software and the
application of this framework to different management use
cases.

The remainder of the paper is organized as follows. After
reviewing related work in Section 2, we describe the physical
and software design principles and architecture in Section 3.
In Sections 4 and 5, we describe several basic and enhanced
algorithms that support vision, navigation, asset classifica-
tion, and self-protection, intermingling the algorithms with
evidence of their effectiveness from simulation and physical
experiments that we have conducted in four different data
centers. Section 6 describes the integration of the robot with
a commercial data center energy management product, and
presents practical scenarios that illustrate how the robot can
improve the self-diagnostic capabilities of the data center.

2. RELATED WORK
Intelligent monitoring and automated, adaptive energy

and thermal management of data centers has been a highly
active research area in recent years. This comes as no sur-
prise in large scale computing as energy and cooling costs
loom, the environmental concerns increase, and the empha-
sis on energy regulation for computing systems and facili-
ties grows stronger [26, 1]. Patel, Sharma et al. present
some of the early work in data center monitoring and man-
agement [18, 19, 23] identifying some key inefficiencies in
cooling and CRAC configurations. Several studies explore
techniques for efficient energy and thermal provisioning in
data centers [5, 22, 8, 7]. Some studies employ coordinated
schemes based on control or utility models to collectively
manage multiple control knobs [6, 4, 21]. Some recent re-
search also incorporates dynamic workload placement as an
additional soft control knob for data center management [14,
16, 15]. While there is clearly no shortage of work in data
center management, most of the prior approaches assume a
perfect world, where all the required vast level of monitor-
ing is readily available and all the distributed sensing and
control knobs are seamlessly integrated. However, the state
of reality is nowhere near such level of integration for con-
trollability and especially observability. Thus, our mobile
monitoring and management approach bridges a major crit-
ical gap in data center monitoring and management by first,
providing a simple, tractable and dense monitoring approach
and second, demonstrating a true seamless integration of
monitoring to data center control.

Some prior studies also consider bridging the gap between
monitoring and management by providing distributed inte-
grated monitoring or using controlled mobile sampling. In
comparison to these, our technique presents an approach
with minimal intrusion to data center operations, and more
importantly, brings in autonomic monitoring into data cen-
ters with a practically invisible barrier for adoption. In prior
work, Tschudi et al. [25] recommend integrated monitoring
schemes for data centers, while this is inarguably of great
value, such high-end integrated monitoring has a high cost
of entry, and requires periodic maintenance, verification and
calibration. Our work reduces this barrier to almost nothing
by eliminating any requisite in the existing data center de-
sign. Bash et al.[2], also consider efficient data center moni-
toring by selective sensor sampling and determining the best
set of fixed sensor locations, while our technique is based on
mobile sensing, which can complement static instrumenta-
tion. Hamann et al. present a related mobile measurement
technology (MMT) with a mobile sensor cart, which can
optionally be compounded with static sensing, for spatially-
dense data center profiling [11, 9].Our work also has the
same motivation of providing dense monitoring. However,
in addition to this, we bring in autonomicity in data center
operations, which opens up a whole range of new possibili-
ties for on-demand, control driven, and selective autonomic
monitoring and management.

Other researchers have explored robotic monitoring ap-
proaches for different environments. Patel et al. [19, 17] ar-
gue for robotic monitoring and management for data centers,
but do not describe a design or provide any implementation
details. Pon et al. [20] describe a cable-based robot for mon-
itoring environmental data in rivers and forests. In prior
work [13] we described a first example of an autonomous
robot for data center mapping and monitoring—an early
prototype of the robot described in the current paper. In
the present work we describe a battle-hardened version of
the robot based on actual data center deployment and im-
plementation experiences. We explain how we improve the

robot’s robustness to unpredictability in its environment,
and thus its autonomy, and provide quantitative evaluations
of the robot’s efficiency and robustness. We also describe the
robot’s integration into an enterprise asset management ap-
plication for data center energy efficiency management and
problem diagnosis.

3. ROBOT DESIGN
Our robot’s most fundamental purpose is to eliminate the

human labor required to map and monitor both new and
known data centers. This translates into the following set
of basic design objectives, all of which must be attained
completely autonomously:

• Full Coverage. The robot must visit every region of
the data center that is contiguous from an arbitrary
starting position, with or without prior knowledge of
the data center layout.

• Sensor Map Generation. The robot must generate
a reasonably accurate map of sensor readings. Specif-
ically, it must take sensor readings at sufficiently fine
spatial granularity and associate with each reading an
accurate spatial location.

• Layout Generation. The robot must generate a sim-
ple data center layout. At a minimum, the layout
should distinguish a few basic types of structures or
assets, so that a human operator can recognize the
generated layout as reflecting the physical layout of
the data center.

• Robustness. The robot must carry out its functions
under ordinary operating conditions, working around
unexpected obstacles, coping with network outages,
and protecting itself from harm.

• Low cost. The robot should be constructible from
inexpensive components.

We have been able to meet all of these basic design ob-
jectives, as well as satisfy some additional desirable crite-
ria, through judicious physical design, software architecture,
and algorithms. The last design objective—low cost—is ad-
dressed primarily by the physical design, which is detailed
in subsection 3A, while our first four design objectives are
achieved primarily through software architecture (described
in Section 3B) and algorithms (detailed in Section 4).

3.1 Physical design
The robot, shown in its natural habitat in Figure 1, is

based on the iRobot Create robotic research platform. The
on-board capabilities of the Create include basic locomotion,
bump sensors and odometry, and modest compute power to
control the robot’s motion. We supplemented these capabil-
ities by adding several components:

• An off-the-shelf netbook computer with 1.6 GHz Atom
processor and 1 GB of memory, to provide sufficient
compute power and programming flexibility;

• A 6 1
2

foot tall aluminum pole mounted vertically to
the robot’s base, to enable other components to be
mounted well above the floor;

• A Logitech C905 USB webcam (which provides 320x240
color images) mounted on the pole approximately 30
inches above the floor and angled down so as to view
precisely one floor tile ahead of the present position;

Figure 1: The data center management robot.

• Seven 40-gauge K-type thermocouples (with 3-second
response time to temperature changes) attached to the
pole, and spaced at 1 foot intervals from 4 inches to
76 inches above floor height to provide temperature
readings at different heights ranging up to the top of
typical data center racks;

• A single capacitive-style relative humidity sensor mounted
on the pole approximately 20 inches above the floor;
and

• A custom sensor collection interface that collects data
(i) from the single humidity sensor by measuring in-
cremental changes in the dielectric constant of the ca-
pacitive substrate, and (ii) from the thermocouples
by measuring the thermoelectric voltage differentials
at the bimetallic sensor junctions in sequence, and
converts these measurements to humidity and tem-
perature readings via analog-to-digital conversion, and
transmits them back to the netbook via RS232.

3.2 Software architecture
Figure 2 provides a high-level overview of the software ar-

chitecture of the robotic system. The combination of vision,
sensing, and navigation components that make up the robot
control system is depicted on the right; the visualization and
energy management software with which the robot control
system is integrated is depicted on the left.

To navigate, the robot takes advantage of the square grid
formed by industry standard 2′ x 2′ data center floor tiles1

to move one floor tile at a time, continuously feeling its
way around the data center and keeping track of where it
has already been, eventually visiting all unobstructed tiles.
Whenever it visits a tile, the robot stops at its center, takes
a set of sensor readings at various heights, and analyzes and
classifies each tile image. Then, as described it greater detail
below, it transmits relevant data over a wireless link to the
visualization system.

To assist in the robot’s navigation, still images from the
onboard webcam are fed to the on-board netbook computer
on which the robot control system resides. An image of the

1or the approximately equivalent 600mm x 600mm standard
used in many countries outside of the US.

Visualization System /
Energy Optimization SW

Odometry

Low-Level
Robot Interface

Computer
Vision

Video Cam

EKF

Measurement
Strategy

Exploration
Strategy

Planner

Temperature

Humidity

Air Flow

Sensor Fusion

Layout

Robot path data

Sensor data

Tile & asset
images

On-demand
scan requests

Robot Control System

Create Platform

Figure 2: High-level robot architecture showing in-
tegration with visualization and energy management
software.

tile at which the webcam is currently aimed is analyzed by
the Computer Vision component to classify the tile and to
estimate the robot’s pose (its position and orientation) rela-
tive to the center of the current tile. A second estimate of the
robot’s pose is provided by the Create’s on-board odometry
system, which uses dead reckoning based upon the wheel
rotation and the previously estimated position of the robot.
However, odometry alone is known not to be sufficiently ac-
curate for robot navigation [3]. The pose estimates from
the Computer Vision and Odometry components are input
to an Extended Kalmann Filter (EKF) [24] to generate a
more precise pose estimate, which is in turn passed on to
the planner, which is responsible for overall navigation.

When the Planner receives a signal from the low-level
robot interface indicating that the robot has stopped in a
particular orientation at the center of a tile, several data are
sent via the netbook’s wireless interface to the visualization
and energy optimization software, including a still image of
the tile ahead, its classification as determined by the Com-
puter Vision component, and an update to the robot’s loca-
tion and path. Additionally, the Planner consults the Mea-
surement Strategy component to determine whether sensor
readings are required for the current position. Sensor read-
ings may not be needed if a tile has been visited recently,
or if the robot is conducting a quick selective scan of a data
center for which the layout is already known. If readings
are desired, the Planner triggers readings from the onboard
temperature and humidity sensors (and any other types of
sensors that may be mounted on the aluminium pole) via a
serial port request to the dedicated thermocouple and hu-
midity sensor interface. Data from the various sensors are
received by a Sensor Fusion component, which is designed
to make the addition of new sensor types as seamless as
possible, and sent to the planner, which associates the read-
ings with their known physical locations and sends this tuple
data to the visualization and energy optimization software.

Finally, the Planner consults the Exploration Strategy
component, which contains logic that governs whether the
robot moves forward by one tile or turns 90 degrees (either
for viewing or to change the direction of motion). An im-
portant factor in exploration decisions is the Computer Vi-
sion component’s classification of the neighboring tiles with
regard to whether the tiles are believed to be visitable or
not. The planner maintains a data structure indicating the
known layout, what has been visited, and which tiles are be-
lieved to be visitable or unvisitable. Using this information,
the Exploration Strategy component makes a decision about
where to go next, which the planner in turn communicates
with the Low-Level Robot Interface, directing it to turn 90
degrees or move forward one tile, as appropriate.

The visualization and energy optimization software with

which the robot is integrated is a commercially available as-
set management product designed specifically for data center
energy management, Maximo for Energy Optimization 7.1.1
(MEO), to which we have added a few enhancements. The
types of data that the robot sends to MEO include:

• the layout and sensor data as they are acquired;

• the path taken by the robot, from the starting tile up
to the present position; and

• a stream of still tile images.

MEO can govern the robot’s behavior by sending to its con-
trol system on-demand scan requests. The two-way interac-
tion between the robot control system and MEO supports
a variety of practical scenarios, including manual or auto-
mated dispatch of the robot to a given area to take addi-
tional images of a region in which temperatures are elevated,
or to perform a fine-grained scan of a particular area of the
data center.

4. BASIC VISION AND NAVIGATION AL-
GORITHMS

In this section we discuss the basic vision and navigation
algorithms used by the Robot Control System, and quantify
their efficacy through a set of experiments.

4.1 Basic vision algorithms
The purpose of the computer vision system is two-fold.

First, in conjunction with input from the robot platform’s
odometry it helps determine the robot’s location and ori-
entation relative to the grid established by the floor tiles.
Second, it classifies the tile the robot and its camera are
facing. In the current implementation, tiles are classified
along two dimensions: visitability and perforation. Specifi-
cally, tiles are either visitable or blocked, and they are either
perforated or plain. Perforated tiles are essential in most air-
cooled data centers because they deliver cool air from below
the floor to the inlets of IT devices.

Here we provide an overview the vision algorithm; a more
detailed description can be found in [13]. Upon receiving a
320x240 color image of the next tile ahead from the webcam,
the Computer Vision component processes it in the following
sequence of four steps:

• Grid Line Finding. Grid lines are identified from
the original tile image by a combination of rectangular
filtering, Sobel edge finding, and connected component
analysis.

• Robot Pose Determination. The angles of the de-
tected lines are histogrammed, and the boundaries of
the next tile are inferred from peaks in the histogram.
The robot’s orientation with respect to the grid and
its relative offset from the current tile center are then
computed.

• Visitability Checking. At this point the image of
the observed tile is perspective-corrected into a square.
Edge detection is again used to identify boundaries. A
clearly identified tile boundary indicates a visitable tile,
while the lack of a clear boundary, such as a missing
edge results in a blocked classification.

• Tile Type Detection. Perforated tiles exhibit light
and dark intensity variations that tend to have cer-
tain symmetry properties. If the pattern of intensity

variations in the transformed tile image is sufficiently
symmetric the tile is classified as perforated. Other-
wise, the tile is classified as plain.

The resulting vision system has proven very robust with
respect to contrast, variable illumination, and partial occlu-
sion of the grid.

4.2 Basic navigation algorithms
One of our fundamental objectives is to provide a fully-

autonomic robotic system with a practically invisible barrier
for adoption. The robot must navigate and produce a data
center layout with no prior information.

In our consideration of various navigation algorithms we
break the algorithms into two tightly coupled processes: (i)
path planning, i.e., deciding on which new data center lo-
cation to go to; and (ii) exploration, i.e., deciding on how
we “uncover” the unknown parts of the data center. The
main goal of path planning is to reach every visitable tile as
efficiently possible, and the goal of exploration is to find a
favorable trade-off between the cost of exploring (turning to
look at) unknown tiles vs. exploiting the already uncovered,
but unvisited locations.

For path planning we investigated two well-known strate-
gies, and a variant suitable for data center layouts: (i) simple
Depth First Search (DFS), (ii) a variant of DFS which we
have dubbed “DFS-Go-Long,” and (iii) Frontier-based A*.
DFS goes along a path as long as there are new visitable
tiles, and then tracks back to the first visitable or unknown
new tile. DFS-Go-Long simply tries to leverage the aisle
structure of data centers and aims to minimize turn costs
by introducing a directionality preference for going straight
forward. Frontier-based A* maintains a frontier of unknown
and visitable, but not yet visited tiles, and takes the path to
the nearest unknown or visitable frontier at each step. Our
evaluations with these approaches show that DFS-based ap-
proaches can lead to exploration costs of up to 80% in excess
of the number of visitable tiles, while the frontier–based ap-
proach typically achieves exploration costs which are in the
vicinity of 20% in excess of the number of visitable tiles.
While DFS-Go-Long achieves minimum turn costs, the over-
all navigation cost is still substantially higher than frontier.
As a result of these observations we base all subsequent ex-
periments on frontier-based A* navigation.

For exploration, we evaluate two approaches that differ
in the level of aggressiveness in which they “check” neigh-
boring unknown tiles. The first technique, Eager Checking,
turns to check all immediate neighbors of the robot at each
forward step and decides on the next path planning step
with the full frontier information. This leads to a slow and
steady exploration pattern that avoids extensive backtrack-
ing to pick up omitted neighbors, but entails a large number
of turn costs. The second technique, Lazy Checking, does
not check its neighbors unless it sees no immediate visitable
tiles to go to. The exploration pattern in this case is to
start quickly, but backtrack in a less informed way to cover
omitted neighbors as the exploration progresses.

To study the effectiveness of these exploration strategies
and how they depend upon the spatial arrangement of the
data center, we developed a navigation simulator. The simu-
lator is provided with accurate estimates of the time required
for the robot to turn, move, bump and track back. Since
it runs several orders of magnitude faster than the robot,
the simulator is ideal for studying alternative navigation al-
gorithms, which are then downloaded to the Exploration
Strategy module of the physical robot.

To assess the impact of lazy versus eager checking on over-
all navigation efficiency we experimented with two simple

18% 24% 28% 32%
15%

0

20

40

60

80

100

120

140

3x3 5x5 7x7 9x9 11x11

Data Center Layout Configuration

N
u

m
b

er
 o

f
T

ile
s

0

4

8

12

16

20

24

28

T
im

e
[m

in
]

Visitable Tiles

Total Time (Lazy) [min]

Total Time (Eager) [min]

Percentage Improvement

2 4 6

2

4

6

8

(a) Blank layout.

16% 13% 11% 10%
17%

0

10

20

30

40

50

60

70

80

90

3x3 5x5 7x7 9x9 11x11

Data Center Layout Configuration

N
u

m
b

er
 o

f
T

ile
s

0

2

4

6

8

10

12

14

16

18

T
im

e
[m

in
]

Visitable Tiles

Total Time (Lazy) [min]

Total Time (Eager) [min]

Percentage Improvement

2 4

1

2

3

4

5

2 4 6

2

4

6

2 4 6 8

2

4

6

8

2 4 6 8 10

(b) Dense layout.

Figure 3: Exploration performance with eager and lazy checking for different layout characteristics.

artificial data centers: (i) Open, consisting of a blank data
center with no obstacles; and (ii) Dead-end, consisting of
dense obstacles with parallel aisles of single-width visitable
tiles, creating a data center with long, narrow dead-end al-
leys.

We measured the scan time for each exploration strat-
egy for a series of progressively larger data center layouts
of the above types. The results, depicted in Figure 3, re-
veal that eager checking performs better in dead-end data
centers, while lazy checking is superior in open data centers
where it reduces the number of turns. In both Figures 3a
and 3b, the bars represent the number of visitable tiles in
each configuration (left vertical axis) while the curves repre-
sent the traversal time for each of the two algorithms (right
vertical axis). The time advantage of the superior algorithm
is provided at the bottom of the bars, and the data center
layout configuration is shown underneath the main graph.
For the open data center, lazy checking is uniformly faster
than eager checking by a percentage that grows with the
size of the data center (32% for the 11x11 configuration).
In contrast, for the dead-end data center, eager checking
is uniformly faster than lazy checking, but the percentage
advantage diminishes as a function of the data center size.

0

1

2

3

4

5

6

SBY1 SBY2 GDC RC2

Data Center

S
ca

n
 S

p
ee

d
 [

T
ile

s/
m

in
]

Speed (Lazy) Speed (Eager)

Figure 4: Average exploration speeds with Eager
and Lazy checking for different data centers.

Last, Figure4 shows the results for exploration speed (to-
tal scan time divided by number of visitable tiles) from ac-
tual data center evaluations with the two exploration mech-
anisms. For each data center the results reflect the averages

for 4 different starting points and the error bars represent
+1 standard deviation across runs, which is quite insignifi-
cant. The actual data center results show that lazy check-
ing performs slightly better for actual data center layouts.
However, the improvement is marginal, averaging around
3% across all the evaluated data centers.

5. ENHANCEMENTS
In this section, we describe several improvements that we

have made to the robot after observing its behavior in sev-
eral widely different data centers, ranging in area from 1000
square feet to 77,000 square feet. These improvements en-
tail (1) algorithmic refinements to the vision, navigation and
sensing algorithms that improve the robot’s efficiency, cover-
age, and classification accuracy and (2) added functionality
to enable the robot to protect itself from hazards it may en-
counter in the data center, thereby reducing its reliance on
human intervention.

5.1 Improved Accuracy and Coverage
Experience with the robot in a number of different data

centers has shown the tile classification algorithms to be 97-
98% accurate. Misclassification, however, has the following
undesirable consequences:

• All misclassifications introduce errors into the auto-
matically derived layout. Layout errors—particularly
those in which plain or perforated tiles are misclassified—
can result in errors in any modeling or analytics based
upon the layout.

• Incorrect classification of a blocked tile as visitable (which
we refer to as a false positive), may result in damage
to the robot, either by bumping unexpectedly into an
obstacle, or by falling into a hole in the floor.

• Incorrect classification of a visitable tile as blocked (which
we refer to as a false negative, may create spurious bot-
tlenecks that reduce tile coverage efficiency (by forcing
the robot to take a long way around to reach a set of
tiles), or tile coverage (by completely isolating some
tiles).

In the remainder of this subsection, we focus on mecha-
nisms we have developed to mitigate the impact of naviga-
tion errors caused by false positives and false negatives, as
these are much more serious in nature than tile type mis-
classifications.

5.1.1 False positives
We use three mechanisms in tandem to ensure effective

self-protection of the robot through mitigation of false pos-
itives:

• The built-in cliff sensor helps avoid falling into holes
(the occasional missing tile);

• The built-in bump sensor stops the forward motion of
the robot as soon as it makes contact with an obstacle;

• A custom overhang detection mechanism uses stereo
infrared sensing to avoid obstacles that lie above the
field of view of the downward-pointing webcam.

If either of the two built-in sensors is triggered, the robot’s
navigation logic causes it to back up and return to the center
of the previous tile, and the visited tile is now classified as
blocked.

The third case is more interesting. Even if the vision
system correctly identifies that the tile itself is unobstructed
at the floor level, the robot may still be placed in jeopardy
if it visits that tile because its tall aluminum pole may run
into an overhang or other obstacle that lies entirely above
the floor, out of range of the vision system. Such a situation
is depicted in Figure 5.

Figure 5: The robot getting upended while scooting
under a mobile whiteboard in the data center.

Overhangs encountered in data centers include desks, ta-
bles, cables, and slide-out keyboard trays mounted in racks.
Overhangs are potentially hazardous to the robot’s well-
being, as they can push the robot’s pole backward, thereby
stopping the robot in its tracks or even upending it.

To avoid such problems, we initially mounted an upward-
pointing Sharp, model GP2Y0A02YK0F, infrared proxim-
ity sensor at the leading (front-pointing) edge of the robot,
tuned so that it could detect obstacles up to the top of the
pole. The Sharp proximity sensor consumes 22 mA of cur-
rent, has an average response time of 33 ms, can measure
distances to obstacles from 20-150 cm and can detect the
presence of obstacles up to approximately 250 cm. After
observing that the infrared sensor can be misled by intense
or reflected lighting, we changed the configuration to that
shown in Figure 6. Two of the Sharp sensors are installed
on the robot base just behind the robot’s leading edge and
separated by about 15 cm, and the sensors’ sensitivity has
been reduced to approximately 3 1

2
feet (115 cm) in order to

reduce the likelihood of interference from intense lighting.
Since the robot will not detect overhangs above 3 1

2
feet,

care must be taken prior to any scan to clear the center of
overhangs lying between 3 1

2
feet and 6 1

2
feet in height.

Figure 6: The Create base with mounted dual
upward-pointing infrared sensors. The actual sen-
sors point up from just inside the leading (curved)
edge of the robot, as indicated.

5.1.2 False negatives

Figure 7: Depending on the angle of approach,
the same tile may appear blocked (left) or visitable
(right).

False negatives are undesirable because they can reduce
both the amount and the efficiency of tile coverage. To re-
duce their likelihood, we exploit a simple observation. As
illustrated in Figure 7, a tile may appear visitable from one
angle of approach, but blocked from another. Since, during
the course of the robot’s exploration, it typically views the
same tile from different orientations, we can employ a sim-
ple OR’ing approach in which we classify a tile as visitable
if the vision system deems it visitable during at least one
encounter.

Figure 8: Example application of OR’ing to an ac-
tual data center scan. The left layouts show two
scan results with misclassifications. In each layout, a
key misclassification is highlighted. The right layout
shows the achieved layout when OR’ing is enabled.

Figure 8 illustrates how false negatives can reduce tile cov-
erage in a real data center, and how the OR’ing approach can
help solve the problem. In a particularly troublesome 1000

square foot data center, a first layout was generated by the
robot (top left). Out of 145 visitable tiles in the data cen-
ter, three or four were misclassified as blocked, one of them
resulting in an apparent dead-end that forced the robot to
take a very long route to explore tiles that could have been
reached easily had it realized that it could traverse the tile.
Then, the robot’s memory of the layout was deleted, and a
second scan was conducted, beginning from a different tile,
and resulting in a different layout (bottom left) that was
nearly identical to the first, except that a different small set
of tiles was misclassified, one of which created a different
exploration bottleneck that also reduced the exploration ef-
ficiency. In some data centers, the resulting bottleneck can
be so severe as to completely isolate several tiles, preventing
the robot from visiting them at all.

The right hand plot of Figure 8 shows that, when OR’ing
is employed, the spurious obstacles are eliminated, offering
the potential for improved coverage and reduced exploration
overhead. To understand the potential improvements from
that could be realized in practice, we took three scans of the
1000 square foot data center, all of which produced slightly
different sets of 3 to 4 misclassified tiles. The three scans
were OR’ed together, resulting in a layout that was per-
fectly correct in terms of visitable/blocked classifications.
A worst-case layout was also generated by collecting all of
the misclassifications that occurred during any of the three
scans. The simulator was then used to determine how much
time the robot would take to traverse the OR’ed layout, the
worst-case layout, and the layouts that were generated dur-
ing the three scans.

96
%

10
0%

98
%

95
%

10
0%

82
%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

Worst
Coverage

Average
Coverage

Max Coverage
with OR'ing

C
ov

er
ag

e
&

 E
xp

lo
ra

tio
n

S
pe

ed

Coverage Exploration Speed

Figure 9: Coverage and exploration speed improve-
ment using vision classification based on OR’ing.

In Figure 9, the light bars represent the average ratio of
visited tiles to visitable tiles, while the dark bars represent
exploration speed per visited tile. For the worst-case layout,
18% of the visitable data center area cannot be reached,
while the exploration speed is only slightly less than for the
perfect layout (by just 2%). In the average case, the explo-
ration speed and coverage reduced by about 5% compared
to that achieved with the perfect layout. The reason the ex-
ploration speed per visitable tile is better for the worst-case
layout than it is for the average case is that in the worst-case
layout the robot avoids going down narrow alleys that tend
to take longer to explore on average.

5.2 Scooching
According to ASHRAE [1], the most temperature sensi-

tive part of the data center is the air inlet areas of racks.
Practitioners who utilize the hand-pushed mobile sensing

station, or “cart”, described in [10], translate this sensitivity
into a need to take extra temperatures there and accomplish
this by “scooching” the cart as close as possible to the inlet
side of racks and taking an extra measurement there. The
operator enters the location of these additional readings into
a tool.

To succeed in our goal of eliminating the need for human
involvement in conducting data center scans, we have added
to the robot a scooching mode. The basic idea is to let
the robot bump into obstacles that might conceivably be a
rack (as detected by either the bump sensor or the overhang
detector), pause for a few seconds at the position of contact
to allow the pole to stabilize, record temperatures, add those
temperatures plus the recorded position at which they were
taken to the set of tile-center measurements, and then return
to the previously visited tile.

Depending upon how it is implemented, scooching can
slow down robot navigation considerably. We have imple-
mented various degrees of aggressiveness:

• Bumping. The robot attempts to visit all tiles, whether
or not the vision system has classified them as visitable.
This way, no tile is missed, and moreover the exact po-
sition of an obstacle within a tile can be ascertained,
but navigation can be extremely slow.

• Scooching. The robot employs bumping, and also
takes a temperature sample whenever it makes contact
with any obstacle.

• Selective Scooching. The robot first scans the en-
tire data center using ordinary lazy navigation. Then,
likely rack inlet positions are inferred from a combi-
nation of layout information (including the location of
perforated tiles) and the measured temperature pro-
file. Finally, the robot navigates as efficiently as pos-
sible to the rack inlet positions and uses bumping and
scooching to obtain the temperatures. This approach
can occasionally miss a few inlet locations.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

SBY1 SBY2 GDC RC2

Data Center

E
xp

lo
ra

ti
o

n
 O

ve
rh

ea
d

Bumping Scooching Selective Scooching Oracle Scooching

Figure 10: Exploration overheads with bumping,
(indiscriminate) scooching, selective scooching, and
scooching with oracle knowledge.

To gain some insights into the relative costs of various
styles of scooching, we used the simulator to compare the
time required to scan four different data centers (all of which
have been explored by the robot) using ordinary lazy, vision-
based navigation, bumping, scooching, selective scooching,
and oracular scooching (which assumes perfect a priori knowl-
edge of the inlet positions). Figure 10 displays the results
in terms of extra percentage overhead beyond ordinary lazy
navigation. The results are quite consistent across the vari-
ous data center layouts we have tried. Comparing the results

for bumping vs. ordinary scooching, we find that the over-
head of scooching is about evenly split between navigation
and taking temperature samples. Despite the inefficiencies
inherent in revisiting positions where the robot has already
been, the overhead for selective scooching is just about half
that of the naive scooching approach. Moreover, note that
most of the overhead for selective scooching is the additional
navigation cost for traveling to the inlet locations. Given
that the overhead for selective scooching is in the 15%-25%
range, compared with about 4% for oracular scooching, it
appears that there may be additional room for improvement.
It is clear that such an algorithm, if it exists, would have to
identify potential rack inlet positions as the robot is doing
its initial scan, i.e. it would have to eliminate the need to
complete a full scan before traveling back to the inlets to
collect their temperatures.

6. SOFTWARE INTEGRATION
IBM Tivoli Maximo for Energy Optimization (MEO) is a

commercial product that provides asset management, visu-
alization, and analytics capabilities that are designed specif-
ically for data centers. In its data center viewer window,
MEO provides a bird’s eye view of the data center layout,
displaying in their proper locations various types of assets
such as racks, and the individual IT equipment that they
contain (including servers and storage devices), power dis-
tribution units (PDUs), and CRACs (Computer Room Air
Conditioners).

In MEO, one can select a number of layers to superimpose
with partial transparency on the asset view, each of which
represent two-dimensional slices of the distribution of some
measurement of interest, including temperature, hot spots2,
or humidity.

All of these views are based upon interpolations of live sen-
sor readings, which have historically been provided by fixed
sensors. At least two distinct types of interpolation are em-
ployed. First, if only the live sensor readings are available,
interpolation is based on a somewhat sophisticated weighted
average of sensor readings in the neighborhood of the point
at which the interpolated value is being computed. The
weights take into account the distance as measured around
thermal barriers. Second, if one has access to temperature
readings of fine spatial granularity that were taken at an
earlier time, an even more sophisticated and accurate form
of physics-informed interpolation can be performed. Histor-
ically, the only source of such fine-grained data has been a
manual scan by the aforementioned “cart.”

Another available layer depicts CRAC zones: regions of
the data center for which a particular CRAC provides the
primary cooling. While CRAC zones can be computed ap-
proximately from certain input data plus live sensor read-
ings, as is the case for temperature interpolation, CRAC
zones can be computed more accurately if one has access to
fine-grained sensor and layout data collected by the cart.

Referring to Figure 2, the data collected by the robot has
multiple valuable uses within MEO. In one mode, the robot
can be treated as a replacement for the cart, autonomously
exploring a previously unknown data center and populating
the asset database with information about the locations of
plain and perforated tiles, and other objects, as well as col-
lecting temperature and humidity data that can be used to

2The hot spot layer is simply a reinterpretation of the in-
terpolated temperature data, in which the pixels are colored
according to their offset from a temperature thresholds that
is relatively low near the inlet of IT equipment and much
higher near the IT equipment exhaust.

support more accurate interpolations and analytics such as
the CRAC zone calculation. In a second mode, the robot
can be run in a periodic or on-demand fashion to collect
live sensor readings at locations in which there are no fixed
sensors. With the robot, a new type of sensor reading—tile
images—becomes available to MEO.

After describing each of these two modes of operation in
turn in the next two subsections, we conclude in the final
subsection with a few scenarios demonstrating how the robot
and MEO can work in tandem to simplify data center energy
management.

6.1 The robot as an autonomous cart
When the robot navigates a previously unknown data cen-

ter, it incrementally transmits layout and sensor data wire-
lessly to MEO in the same format that was developed to
convey data from the MMT cart to MEO. This allows MEO
to update its rendering of the layout and the temperature
distribution in near real-time, as its knowledge of both con-
tinues to grow. As the robot makes its way to new tiles,
or views previously unseen tiles, the tile views and visits
are recorded and sent to MEO so that a human being, pos-
sibly in a remote location, can track the robot’s progress.
The starting point and current location of the robot are in-
dicated on the map with an “O” and “X” respectively, as
illustrated in Figure 113.

Currently, tiles are classified as either standard tiles, per-
forated tiles, or obstacles. Thus the robot does not at present
distinguish among different asset types (e.g. racks, CRACs,
PDUs, furniture, or non-assets, such as walls). However,
even these coarse distinctions provide a good foundation for
the more sophisticated interpolation and other forms of anal-
ysis that rely upon some knowledge of data center layout.

6.2 The robot as an on-demand mobile sensor
platform

While the robot was originally conceived as a replacement
for the MMT cart, the fact that it is fully autonomous opens
up a qualitatively new function that is simply not feasible
for the cart: it can stay in a data center and serve as a
robot-in-residence that runs periodically or in response to a
command from administrator or MEO to collect tempera-
ture and perhaps other measurements from the entire data
center, or some portion of it. In this way, the robot can
either supplement or obviate the need for fixed sensors, and
can provide temperature maps that are much more fine-
grained than can ordinarily be obtained from all but the
most densely-monitored data centers. As an example, con-
sider one of the 1000 square foot data centers that has been
included in experiments reported in earlier sections of this
paper. There are approximately 4 sensors on each rack, and
about 20 racks, for a total of about 80 sensors. The robot
took 7 temperature readings at each of 145 visitable tiles:
1015 readings in all, more than an order of magnitude more
within the same volume of space.

Even more interestingly, the robot can provide additional
valuable sensor information that is simply not available from
any fixed sensors: streams of still images of tiles as viewed
from its onboard video camera. We have modified the user
interface of MEO such that an administrator can right-click
on a tile and view one or more images of it, possibly from
multiple perspectives. This can prove very valuable in di-
agnosing problems that first surface in MEO as hotspots or

3In fact information regarding the robot’s entire path is sent,
though we have found this path to be too cumbersome to
present in the GUI.

Figure 11: The emerging layout (left) and heatmap (right) as seen from the data center management software.

other alerts—for example, one can easily see whether a box
or piece of equipment has been parked temporarily over a
perforated tile, blocking the flow of cool air into the inlet
side of racks.

6.3 Usage Scenarios
Here we briefly describe two of the many scenarios that

illustrate how the robot can be employed with MEO to fa-
cilitate energy management and problem diagnosis in data
centers.

Improving spatial resolution of the temperature map: One of
the fundamental ways in which the robot’s dense tempera-
ture scans comes in handy is in improving the quality of the
overall interpolation. To get a handle on the extent of this
improvement, using data from a robot scan we performed
in the Poughkeepsie RC2 data center, we simulated placing
four static static sensors on every rack, two on the air inlet
side and two on the exhaust side, with one pair placed 1.5
feet from the floor, and another pair placed 4.5 feet from the
floor. We then computed how well these static sensors pre-
dicted the actual temperatures taken by the robot at each
of the seven elevations that it measures (0.5 feet up to 6.5
feet) at the center of each tile. In this data center there were
18 racks so we simulated a data center instrumented with
72 sensors. In contrast, the robot took its 7 sensor readings
(not counting humidity) at the center of 251 tiles for a total
of 1757 readings. A graph summarizing how well these 72
sensors recovered the 1757 sensors using the inverse distance
squared interpolation used in the MEO product is depicted
in Figure 12. The overall mean absolute error for all inter-
polated results was 1.18◦C. The astute reader will note the
net bias towards underestimating temperatures using such
a sensor configuration since heat rises and the robot takes
relatively more readings above 4.5 feet than it does below
1.5 feet.

Figure 13 further demonstrates the accuracy comparison
of the robot’s thermal profile to that achievable by different
scales of static sensor deployment for the experimented data
centers. The figure shows the average error in the interpo-
lated thermal profile with different sensor densities, i.e., the
ratio of deployed sensors to the available tiles in the data
center. For the range of practical sensor deployments the
average error is in the range of 1-2◦C, while the error di-
minishes to 0 as the density approaches 1, i.e., the number
of deployed sensors approaching the number of tiles in the
data center.

Automatic or on-demand hotspot investigation: Figure 14
shows the data center viewer with the hotspot layer selected.
The temperature readings are interpolated from the 80 fixed

0

100

200

300

400

500

600

[-7,-6) [-6,-5) [-5,-4) [-4,-3) [-3,-2) [-2,-1) [-1, 0) [0, 1) [1, 2) [2, 3) [3, 4) [4, 5]

Bias (Degrees C)

V
al

u
es

Figure 12: Interpolation bias attributable to 72
static sensors placed at 1.5 feet and 4.5 feet above
the floor at both the air inlet and exhaust sides of
all racks in the Poughkeepsie RC2 data center.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.01 0.02 0.04 0.08 0.16 0.32 0.64 1

Sensor Density

A
ve

ra
g

e
E

rr
o

r
[C

]

SBY1

SBY2

GDC

RC2

Data Centers:

Figure 13: Average error in derived thermal profiles
with different number of static sensors for different
data centers.

sensor readings in the data center. A clear hotspot is devel-
oping in the upper left region of the data center.

Using a modified version of the MEO interface, an admin-
istrator viewing it could click on the hotspot to see a set of
possible actions, one of which includes dispatching the robot
to collect temperature and image data within the afflicted
region. Using the alerting functions built into MEO, one
could also set up a rule that would automatically dispatch
the robot once a hot spot is detected. The robot is capa-
ble of taking temperature readings confined to a specified
region, thereby providing greater spatial resolution, which
might provide insights into the likely cause of the hot spot,
and the image data may help reveal the cause.

Figure 14: A hot/cold spot map. Hot air is spilling
around the sides of the racks at the end of the left
hand cold aisle creating a hot spot. The right mouse
(context) menu shown is an extension of the MEO
interface to allow interaction with the robot and its
collected artifacts.

7. CONCLUSION
We have described an accurate, efficient, robust, low-cost

mobile robotic sensor platform, and demonstrated through
several experiments that it is practical for mapping and
monitoring real data centers, even ones it has never seen
before. While much of the existing literature of autonomic
computing focuses on ecosystems of software autonomic el-
ements that lead to autonomic or semi-autonomic behavior
at the system level, the robot is essentially a physical au-
tonomic element that works alongside its software counter-
parts (workload managers, etc.) in a data center environ-
ment. Like other autonomic elements, the robot manages its
own behavior—easily adapting itself to new environments
and protecting itself from harm—while contributing to the
self-diagnostic and self-optimization capabilities of the data
center as a whole.

8. REFERENCES
[1] ASHRAE Publication. 2008 ASHRAE environment

guidelines for datacom equipment: Expanding the
recommended environmental envelope. Technical report,
American Society of Heating, Regrigerating and
Air-Conditioning Engineers, Inc., 2008.

[2] C. E. Bash, C. D. Patel, and R. K. Sharma. Dynamic
thermal management of air cooled data centers. In Proc. of
the 10th Int’l Conf. on Thermal and Thermomechanical
Phenomena in Electronics Systems (ITHERM), pages
445–452, San Diego, CA, May 2006.

[3] J. Borenstein, H. R. Everett, L. Feng, and D. Wehe. Mobile
robot positioning: Sensors and techniques, 1997.

[4] T. Boucher, D. Auslander, C. Bash, C. Federspiel, and
C. Patel. Viability of dynamic cooling control in a data
center environment. In Proc. of the 9th Int’l Conf. on
Thermal and Thermomechanical Phenomena in Electronics
Systems (ITHERM), pages 445–452, Las Vegas, NV,
August 2004.

[5] J. S. Chase, D. C. Anderson, P. N. Thakar, A. N. Vahdat,
and R. P. Doyle. Managing energy and server resources in
hosting centers. In Proc. 18th Symposium on Operating
Systems Principles (SOSP), 2001.

[6] R. Das, H. Hamann, J. Kephart, and J. Lenchner.
Utility-function-driven energy-efficient cooling in data
centers. Proceedings of the 7th International Conference on
Autonomic Computing (ICAC), pages 61–70, 2010.

[7] R. Das, J. Kephart, C. Lefurgy, G. Tesauro, D. Levine, and
H. Chan. Autonomic multi-agent management of power
and performance in data centers. Proc. of 7th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS),
Industry and Applications Track, pages 107–114, May 2008.

[8] M. Femal and V. Freeh. Boosting data center performance
through non-uniform power allocation. In 2nd Int’l
Conference on Autonomic Computing (ICAC), 2005.

[9] H. Hamann, T. van Kessel, M. Iyengar, J.-Y. Chung,
W. Hirt, M. A. Schappert, A. Claassen, J. M. Cook,
W. Min, Y. Amemiya, V. Lopez, J. A. Lacey, and
M. O’Boyle. Uncovering energy efficiency opportunities in
data centers. IBM Journal of Research and Development,
53(3):10:1–10:12, 2009.

[10] H. F. Hamann, J. Lacey, M. O’Boyle, R. R. Schmidt, , and
M. Iyengar. Rapid three dimensional thermal
characterization of large-scale computing facilities. IEEE
Trans. Comp. Pack. Techn., 31(2):444–448, 2008.

[11] H. F. Hamann, M. Schappert, M. Iyengar, T. van Kessel,
and A. Claassen. Methods and techniques for measuring
and improving data center best practices. In Proceedings of
11th Intersociety Conference on Thermomechanical
Phenomena in Electronic Systems, pages 1146–1152, May
2008.

[12] J. G. Koomey. Estimating total power consumption by
servers in the U.S. and the world.
http://blogs.business2.com/greenwombat/files/
serverpowerusecomplete-v3.pdf, 2007.

[13] C. Mansley, J. Connell, C. Isci, J. Lenchner, J. O. Kephart,
S. McIntosh, and M. Schappert. Robotic mapping and
monitoring of data centers. IEEE International Conference
on Robotics and Automation (ICRA), 2011.

[14] J. Moore, J. Chase, and P. Ranganathan. Making
scheduling “cool”: Temperature-aware workload placement
in data centers. In Proc. 2005 USENIX Annual Technical
Conference (USENIX ’05), 2005.

[15] R. Nathuji, C. Isci, and E. Gorbatov. Exploiting platform
heterogeneity for power efficient data centers. In Proc.
Fourth Int’l Conference on Autonomic Computing (ICAC),
pages 5–14, 2007.

[16] L. Parolini, B. Sinopoli, and B. H. Krogh. Reducing data
center energy consumption via coordinated cooling and
load management. HotPower 08: Workshop on Power
Aware Computing and Systems, December 2008.

[17] C. Patel. A vision of energy aware computing from chips to
data centers. Proc. of the International Symposium on
Micro-Mechanical Engineering (ISMME), Dec 2003.

[18] C. Patel, C. Bash, and C. Belady. Computational fluid
dynamics modeling of high compute density data centers to
assure system inlet air specifications. Proc. ASME Int’l
Electronic Packaging Technical Conference and Exhibition,
2001.

[19] C. Patel, C. Bash, R. Sharma, A. Beitelmal, and
R. Friedrich. Smart cooling of datacenters. Proc. of the
PacificRim/ASME Int’l Electronics Packaging Tech.
Conference and Exhibition (IPACK), July 2003.

[20] R. Pon, M. Batalin, J. Gordon, A. Kansal, D. Liu,
M. Rahimi, L. Shirachi, Y. Yu, M. Hansen, W. Kaiser,
M. Srivastava, G. Sukhatme, and D. Estrin. Networked
infomechanical systems: a mobile embedded networked
sensor platform. 2005.

[21] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and
X. Zhu. No power struggles: A unified multi-level power
management architecture for the data center. In
International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), 2008.

[22] P. Ranganathan, P. Leech, D. Irwin, and J. Chase.
Ensemble-level power management for dense blade servers.
In Proc. Thirty-third Annual Int’l Symposium on
Computer Architecture (ISCA), 2006.

[23] R. Sharma, C. Bash, C. Patel, R. Friedrich, and J. Chase.
Balance of power: Dynamic thermal management for
internet data centers. IEEE Internet Computing,
9(1):42–49, January 2005.

[24] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics.
The MIT Press, 2005.

[25] W. Tschudi, E. Mills, S. Greenberg, and P. Rumsey.
Measuring and managing data-center energy use. HPAC
Engneering, pages 45–51, March 2006.

[26] U.S. Environmental Protection Agency ENERGY STAR
Program. Report to congress on server and data center
energy efficiency, 2007.

