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Abstract. Terrain classification in robotics has heavily focused on

determining a region for traversal, while also labeling obstacles. Our

work attempts to expand this essentially binary viewpoint and to use

terrain classifiers as an indicator for switching between a set of sys-

tem dynamics. By learning multiple models of the system dynamics,

the robot is able to assess alternative paths based on traversal costs of

different terrain types instead of strict distance metrics. We demon-

strate a system that reliably learns an optimal control policy using

this additional terrain information and contrast it with several sys-

tems based on more traditional methods that fail to reliably complete

the same task.

1 Introduction

Terrain classification for road following is often a binary road (pass-

able) versus non-road (impassable) classification. As such, the robot

cannot distinguish more or less passable terrains so as to prefer more

passable terrains but allowing for less passable terrains to be tra-

versed if alternatives are limited or if doing so would lead to a greatly

reduced travel time. In this work, we take a more utility-oriented

approach, distinguishing between a wider class of terrains, learning

distinct dynamics models for each, and using these models to plan

cheapest paths taking terrain into consideration.

The work in this paper frames this problem in the setting of re-

inforcement learning [16]. Recent work in the field has provided

bounds on how much experience is needed to learn optimal control

policies [10]. These bounds are typically proven with no assumptions

about similarities between states, which leads to learning algorithms

that scale at best linearly with the number of states. In a robotic do-

main, where the space of inputs is potentially infinite, these bounds

are typically not useful. Instead, this paper builds on related work that

exploits structure in the underlying state space to reduce the quantity

of information needed to learn accurate models [12]. By using au-

tomatically extracted classes to index separate dynamics models for

learning, the agent is able to perform more flexible path planning.

2 Related Work

A typical implicit assumption in robot-navigation research is that the

robot has one dynamics model, which describes how it traverses from

one state to the next. One example is in the representation of the state

transition model in a Kalman filter’s predict step, which captures the

prediction of the next state from the current state [9]. One of the ways

of ensuring that this assumption holds is to have the system follow

surfaces appropriate for the model. This approach is often referred to

as road following [5]. A common way to determine what is a road
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Figure 1. Image of the LEGO R© Mindstorms NXT robot in the

experimental environment.

and what is not is to use a supervised learning algorithm to construct

a terrain classifier [13]. When roads are not marked, such as on dirt

roads or in clearings, a combination of sensors such as laser range

finders and video cameras can be used in this binary terrain classi-

fication task to train an agent to learn to recognize the road through

supervised [14] and self-supervised techniques [6]. Research has also

been done in terrain modeling to determine the pass-ability of an area

when the ground cannot be seen [17].

These approaches, when successful, result in the robot navigating

correctly to its goal location along a single terrain class. However,

the path taken might not be optimal in a utility-theoretic sense. By

using the assumption that there is only one dynamics model in the

world, the agent is unable to fully calculate the best path to the goal.

The plan or policy generated would be sub-optimal because a single

model would try to encompass both the good (road) and bad (off-

road) parts of the world; this oversimplification can lead to improper

policy cost estimation. By learning multiple dynamics models, the

agent can more fully model the dynamics of the environment and

calculate a better policy.

From a reinforcement-learning perspective, navigation algorithms

are often assessed based on the agent’s learned policy and the how

far that policy is from optimal. Obtaining a good policy often means

fully exploring the environment. Exploration, though, comes at a

cost, and therefore must be done in an efficient manner [1]. Even

an efficient exploration algorithm may not be enough to converge to

a good policy in a reasonable amount of time. For this reason, many

algorithms use generalization techniques, such as function approxi-

mation, to limit the amount of exploration needed to learn about the

entire environment [8].



Our contributions in this paper include using classes or types ex-

tracted from images of terrain to allow for the generalization of ac-

tion models across states, which speeds up the learning time while

allowing for efficient exploration. We also demonstrate experimental

environments that cannot be completed reliably without the use of

separate state dynamics, showing that not only does this technique

speed learning, but some situations actually require it.

3 Background

Previously, we introduced the idea of relocatable action models

(RAM) to enhance exploration [11]. Instead of using the traditional

Markov decision process (MDP) representation of states, actions, and

transition functions, we used the RAM representation of states, ac-

tions, types and outcomes [15]. This alternative representation of the

underlying MDP is defined by 8-tuple 〈S,A,C,O, κ, t, η, r〉, where

S is a set of states, A is a set of actions, C is a set of types, O is a set

of outcomes, r : S → < is the state dependent reward function, and

κ : S → C is a mapping indicating how each state maps to a type or

cluster. The function t : C×A→ Pr(O) is a mapping known as the

relocatable action model. It captures effects of different actions in a

state-independent way by mapping a type and an action to a proba-

bility distribution over possible outcomes. In this work, outcomes are

the change in location and orientation in robot coordinates. The map-

ping η : S×O → S is the next-state function. It takes a state and an

outcome and computes the resulting next state by transforming from

robot coordinates to world coordinates.

In this paper, our vision-based terrain-classification system is what

defines the type mapping κ. This mapping converts perceptual fea-

tures of the state space into a finite set of terrain types. We show that

κ can be computed a priori using a generic vision system. With κ and

η defined, the learner can focus on the terrain-specific action model,

resulting in fast, accurate learning.

Whereas prior work [11] used a hand-tuned classification of states

to types, the current paper shows that this mapping can be extracted

automatically and used successfully in the learning setting.

4 System Architecture

Figure 2. Flow chart of the system architecture. The dashed lines indicate

information passing that occurs at startup.

Figure 2 shows the flow of data through our system for a robotic

domain. Before the robot is placed in the environment, a picture

is taken with an overhead camera and sent through an image-

segmentation engine to determine terrain classification (see Sec-

tion 4.1). Classification information is then stored as an additional

feature for each state.

Once the state space is defined, the robot is placed in its starting

configuration and the agent queries the localization system for the

robot’s position in the world. Using this information, the agent, with

the guidance of the RAM-Rmax algorithm (see Figure 3), chooses

which action to take based on the outcomes it has previously seen.

The selected action is then sent to the robot to execute. After ex-

ecution is complete, the agent once again retrieves the robot’s loca-

tion information and uses it to calculate the latest outcome, which is

added to a list of outcomes seen in the same terrain type. The agent

then chooses the next action to take. This process continues until the

localization system tells the agent that the robot is in the goal re-

gion or out of bounds. These occurrences end an episode; the robot

is placed back in the starting location to execute another episode.

4.1 Terrain Classification

We used a IEEE1394 video camera to take an image of the world

without the robot and then fed the image into the Edge Detection and

Image SegmentatiON (EDISON) system [4] where similar terrains

are determined based on color, texture, and proximity of pixels. Since

the image-segmentation system determines the number of clusters on

its own, the one parameter to be set is the minimum number of pixels

that a cluster can contain. This value is set to the number of pixels

that the robot occupies in the image to ensure that all of the robot’s

wheels can occupy a single patch of terrain at the same time.

The clustered image that EDISON returns is then converted into

an indexed image. To limit the number of spurious clusters, all clus-

ters that appear in fewer than
|S|
10

states have their pixels reassigned

to adjacent segments. The remaining clusters are used to determine

the terrain-type feature of the state space. These terrain classifica-

tions will be used to determine to which dynamics model the learned

outcomes will be applied.

4.2 Localization

The localization system is a standard fiducial-based system, which

for these experiments acts as an indoor global positioning system

(GPS). Using the same overhead camera as above, the location of

a marker affixed to the robot is obtained using commonly available

color-segmentation software [2]. The type of marker used is based on

work done for a robotic soccer application [3]. The typical accuracy

of this system is less than 5mm.

4.3 Learning The Dynamics Model

After an action is taken in state s and the position of the new state s′

is fed back to the agent, the displacement and change in orientation

between s and s′ are calculated. These differences are stored as a list

of outcomes for κ(s). Instead of maintaining a list with an outcome

for every action taken, which could grow without bound, the list of

outcomes keeps a tally tC of how many times that outcome C has

been seen. This approach allows for proper calculation of the prob-

ability of seeing that outcome while minimizing the size of the list

that the algorithm has to traverse. Since the number of possible out-

comes is finite due to the granularity of the localization system, the

maximum size of the outcome list is also finite.



4.4 Planning

When deciding which actions to take in the environment, the agent

uses a parameterized variation of the Rmax algorithm that sets the

expected reward of taking an action in a terrain to the maximum re-

ward, Rmax, if that combination of terrain and action has not been

experienced often. An action becomes “known” for a particular ter-

rain when the robot has performed that action in that terrainM times,

where M is a free parameter. Once the action is “known”, the value

for that action becomes the solution to Q(s, a) =

r(s, a) + γ

(∑
o∈O

tC(κ(s), a, o)

z
×max

a′∈A
Q(η(s, o), a′)

)
, (1)

which is updated as tC changes Here, z is a normalization constant.

To calculate values, all outcomes for that terrain type need to be

mapped back from feature space into state space. For instance, if the

robot is in state swith x = 35, y = 25, θ = 90.0 and the outcome o1
is a displacement of magnitude 2.0 in direction 315.0 and the change

in orientation is 314.0 degrees, then s′ for that outcome would be the

state with the features x = 36, y = 26, θ = 44.0. This calculation

is done for every outcome and the reward for each possible s′ is

weighted by its probability and summed.

Once the value for each action is calculated by the algorithm (see

Figure 3), the agent chooses the action with the highest value and

sends the corresponding command to the robot via Bluetooth
R©.

While planning can take several milliseconds, these calculations can

be performed while the robot is performing its actions (each action

takes approximately one second), resulting in no computational de-

lay.

5 Experiment

To quantify the benefits of using image segmentation for better per-

formance, experiments were performed in a real world robotic envi-

ronment.

5.1 Experimental Setup

For our experiment, we ran a LEGO
R© Mindstorms NXT (see Fig-

ure 1) on a multi-surface environment. This domain, shown in Fig-

ure 4, consisted of a highly variable region comprised of rocks em-

bedded in wax and a more deterministic carpeted area. The goal was

for the agent to begin in the start location (indicated in the figure by

an arrow) and end in the goal without going outside the environmen-

tal boundaries. The rewards were−1 for going out of bounds, +1 for

reaching the goal, and−0.01 for taking an action. Reaching the goal

and going out of bounds ended the episode and resulted in the agent

getting moved back to the start location.

One difficulty of this environment is the difference in dynamics

models. Figure 5 shows the outcomes observed by the robot on both

the rock and carpet surfaces. The center of the circle represents the

starting location of the robot. The dashed lines indicate the angle (in

degrees) and distance (in pixels) of displacement. From left to right,

this figure shows the outcomes of the left turn, go forward, and right

turn actions on for the rock (top) and carpet (middle) surfaces. The

bottom row shows the same outcomes as above, but combines the

terrains to demonstrate the amount of noise that is introduced when

the terrains are not distinguished. Some actions, such as turning right

on rocks, are more sparse than others due to the number of times that

an action was taken during exploration.

Global data structures: Q, tC
Constants: Rmax, M

INITIALIZE():

for c ∈ C, a ∈ A, o ∈ O:

tC(s, a, o) = 0
for s ∈ S, a ∈ A:

Q(s, a) = Rmax

UPDATE(s, a, s′):

o = s′ − s†
tC(κ(s), a, o) = tC(κ(s), a, o) + 1
for s ∈ S:

for a ∈ A
Q(s, a) = Rmax

repeat until Q(s, a) stops changing:

for s ∈ S:

for a ∈ A:

z =
∑
o∈O

tC(κ(s), a, o)

if z ≥M

Q(s, a) = r(s, a) + γ
∑
o∈O

tC(κ(s), a, o)

z

×max
a′∈A

Q(η(s, o), a′)

†
This subtraction is a transformation expressing s′ in the coordinate frame of s.

Figure 3. The RAM-Rmax algorithm.

Figure 4. Image of the environment. The start location and orientation is

marked with an arrow. The goal location is indicated by the circle. Green

pieces of poster board are shown here marking the boundaries of the

environment.
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Figure 5. Outcomes learned by the robot for different actions and surfaces.

Due to the close proximity of the goal to boundary, the agent needs

an accurate dynamics model to reliably reach the goal. To make this

task even more difficult, the actions were limited to going forward,

turning left, and turning right. Not allowing the agent to move back-

wards increased the need for the agent to accurately approach the

goal reliably. For example, if the robot enters the narrow portion

of the environment facing away from the goal, it is not able to turn

around without going out of bounds. As such, a robot with an inaccu-

rate transition model would be likely to think this task is impossible.

For the experiments, we compared the RAM-Rmax and fitted Q-

learning [7] algorithms with and without image segmentation. We

would have liked to run the Rmax algorithm for a comparison, but it

was not plausible to do so due to the robot’s battery life—too much

experience was needed to train the algorithm. All algorithms were

informed of the reward function—it did not need to be learned. The

algorithm with no image segmentation learns one action model for

the entire domain. Figure 6 shows the results of the EDISON image-

segmentation engine when fed in the image of the world and the min-

imum region to segment. Recall that the minimum region to segment

was specified to be the number of pixels that the robot occupies in

the image, which for this experiment was 4000 pixels.

For both agents, the world was discretized to a forty by thirty by

ten state space instead of the camera’s full resolution of 640 by 480

by 360 degrees of orientation. This coarse discretization was used to

limit the number of states that the robot could occupy at once. Lastly,

each algorithm had the value of M set to ten, which was determined

after informal experimentation.

6 Results

Figure 7 shows the average performance and standard deviation of

the RAM-Rmax and fitted Q-learning algorithms with and without

image segmentation over five runs of twenty episodes. When RAM-

Rmax used image segmentation to determine the number of surface

types in the environment, RAM-Rmax reached the goal in 61% of

Figure 6. Resulting discretized segmented image from EDISON of the

environment showing two different surface types. Several states were

mislabeled due to the image processing algorithm, but these mislabelings did

not harm the results.
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the episodes as opposed to 22% of the episodes when using the as-

sumption that all surfaces were the same. This difference is shown in

greater detail when looking specifically in the last 10 episodes after

some learning had taken place. Narrowed to these instances, the suc-

cess rates are 96% and 34%, respectively. Fitted Q-learning was not

able to reach the goal in any of the runs with or without the image

segmentation. Doubling the number of episodes to 40 in a run also

did not result in any positive reward. Indeed, published results with

this algorithm suggest hundreds or thousands of episodes are often

needed.

WS
NS 1
NS 2

Figure 8. Diagram showing paths learned by the algorithm with

segmentation (WS) and with no segmentation (NS) en route to the goal

(shown in yellow). NS1 demonstrates a sample path in which the agent

judged the goal as unreachable and so minimized negative reward by exiting

the environment quickly. NS2 shows a sample path in which the agent’s

inaccurate model causeed it to miss the goal. “X” marks the state used for

the example in Section 7.

The figure also shows a great variation in the performance of the

RAM-Rmax algorithm when it did not use image segmentation. The

reason for this difference is the variability in the dynamics model that

the agent learned for each run. By learning varying dynamics mod-

els, the chosen path of the same agent changed drastically between

runs as shown Figure 8. In two of the five runs, the agent thought

that it was valuable to navigate towards the goal from early in the

run. However, the dynamics model learned was noisy, and the agent

would accidentally drive out of bounds when approaching the goal.

In the other half of the runs, the agent did not think that it was pos-

sible to reach the goal based on its learned dynamics model, and,

therefore, would drive out of the environment as quickly as possible

to minimize negative reward.

In contrast, the agent that used image segmentation learned that

the rocky surface was unpredictable, but that the carpet surface al-

lowed for consistent actions. Once these two surfaces were learned,

the agent was able to arrive at the goal reliably, seldom over-shooting

of the goal, as shown in Figure 8.

7 Discussion

The two RAM-Rmax algorithms outperformed both of the fitted Q-

learning algorithms due to the efficiency with which they use expe-

rience data. RAM-Rmax with and without image segmentation was

able to use its learned model to generalize between states because of

the similarity of the dynamics in these states. Since fitted Q-learning

does not model the environment, its generalization ability was lim-

ited to exploiting local consistency in the value function. Throughout

the twenty episodes, neither of the fitted Q-learning algorithms had

been able to take advantage of any structure and were still active

exploring to learn values. As such, they had learned very little and

ended up going out of bounds every time.

The performance discrepancy of the two RAM-Rmax algorithms

can be better explained when looking at the learned value function

of the two algorithms. For example, when using the RAM-Rmax al-

gorithm with image segmentation, the average expected reward of

a state near the goal (X = 25, Y = 15, θ = 0, marked with an

“X” in Figure 8) was 0.450 with a standard deviation of 0.194 in

comparison with the algorithm without image segmentation which

on average calculated the value of the same state to be 0.1782 with

a standard deviation of 0.373. These values vary because of the dy-

namics models learned. The algorithm without image segmentation

performed as if the goal was on the rocky surface. By increasing the

amount of context the RAM-Rmax algorithm uses to distinguish the

dynamics, it is able to better model its environment.

However, there is a limit to how much improvement additional

context can add. If the terrain classifier were to have found three

types instead of two, the agent might have been able to model the

dynamics of when its front wheels were on one surface and its back

wheel on another. If the agent declared each rock its own surface,

the agent would be able to model its likelihood of getting stuck on

that rock. The problem with this approach is scalability. The more

surface types the learner recognizes, the less it generalizes and the

more exploration it needs to do. In the limit, as the number of types

approaches the number of states, this algorithm becomes equivalent

to (non-generalizing) Rmax.

By scaling the number of terrain types, an algorithm implicitly

assumes information about the structure of the environment. At one

end of the scale, the assumption is that there is one class that all the

world adheres to as in road following. At the other, each state has its

own idiosyncrasies and, therefore, should be modeled individually.

8 Conclusions and Future Work

Optimal decisions for path planning require accurate models for pre-

dicting the outcomes of actions. In this paper, we examined a method

for building accurate models by partitioning learning experiences ac-

cording to a set of automatically extracted terrain classes. We found

that the resulting dynamics models led to a utility-based path plan-

ning system that learned quickly to make effective decisions. Com-

pared to approaches that overgeneralize (estimate a single transition

model) or undergeneralize (estimate separate models for each state),

this approach makes effective use of experience and succeeded at

reaching the goal location at a significantly higher rate in our exper-

iments.

Currently, the system is dependent on the sensory features cor-

relating well with differences between terrains. In future work, we

will explore using feature selection to determine which of the robot’s

multiple sensors best predict terrain characteristics. By doing so, the

agent could learn when to use, for example, ladar, IR, and satellite

imagery to best estimate terrain features that matter for predicting

action outcomes.
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