Efficient Learning of Dynamics Models Using Terrain Classification

Bethany Leffler Chris Mansley Michael Littman

Robotic Motivation of Navigation Task

Robotic Motivation of Navigation Task

Robotic Motivation of Navigation Task

Navigation

Traditional

- Dynamics of the agent are known or learned
- Planning is done with respect to the model

Model-Based RL

- Dynamics of the agent are learned
- Planning is done with respect to the model

Navigation

Traditional

- Dynamics of the agent are known or learned
- Planning is done with respect to the model
- Assumes a single dynamic or model for all states

Model-Based RL

- Dynamics of the agent are learned
- Planning is done with respect to the model

Navigation

Traditional

- Dynamics of the agent are known or learned
- Planning is done with respect to the model
- Assumes a single dynamic or model for all states

Model-Based RL

- Dynamics of the agent are learned
- Planning is done with respect to the model
- Assumes each state may have a different dynamics model

Exploration vs. Exploitation

Environmental Model Matching

Environmental Model Matching

Environmental Model Matching

Our Algorithm

- In Leffler et al 2007, we defined such an algorithm
- This work extends that paper by
 - Empirically demonstrating the significance of adding a single extra model in this framework
 - Fully integrating autonomy into the system, removing the need for hand tuning
 - Comparing against other algorithms for generalization in RL
 - Enabling further extensions

Additional Assumptions

Dynamics Indicator

- There exists a function that indicates what area of the state space has similar dynamics
- This function is often simply a single feature

Relocatable Action Model (RAM) – MDP [Sherstov and Stone, 2005]

MDP

S – State

A – Action

 $R: S \rightarrow \Re - \text{Reward}$

 $T: S \times A \to \Pr(S)$

– Transition Function

RAM-MDP

S – State

A – Action

 $R: S \rightarrow \Re - \text{Reward}$

 $\kappa: S \rightarrow C$ – Cluster Function

 $t: C \times A \rightarrow \Pr(O) - \mathsf{RAM}$

 $\eta: S \times O \rightarrow S - \text{Next-State Function}$

C – Cluster / Type

O – Outcome

Relocatable Action Model (RAM) – MDP [Sherstov and Stone, 2005]

MDP S – State A – Action $R: S \rightarrow \Re$ – Reward $T: S \times A \rightarrow \Pr(S)$ – Transition Function

RAM-MDP

- S State A – Action $R: S \rightarrow \Re$ – Reward $\kappa: S \rightarrow C$ – Cluster Function

 $t: C \times A \rightarrow \Pr(O) - \mathsf{RAM}$ $\eta: S \times O \rightarrow S - \mathsf{Next-State}$ Function

C – Cluster / Type

0 – Outcome

Relocatable Action Model (RAM) – MDP [Sherstov and Stone, 2005]

MDP I	RAM-MDP
S – State	S – State
A – Action	A – Action
$R: S \rightarrow \Re$ – Reward	$R: S \to \Re - Reward$
$T: S \times A \to \Pr(S)$	$\kappa: S \rightarrow C$ – Cluster Function
– Transition Function \longrightarrow –	$t: C \times A \rightarrow \Pr(O) - RAM$
	$\eta: S \times O \rightarrow S$ – Next-State Function
	C – Cluster / Type
	O – Outcome

State Space

D

\bigcirc \bigcirc \bigcirc \bigcirc **(**) ()() $\left(\right)$ ()**`)** ·) ()())

State Space

D

Observe Transitions

- State Space
- Observe Transitions
- Assign transition statistics to the clusters

- State Space
- Observe Transitions
- Assign transition statistics to the clusters
- Use these statistics to plan

System Architecture

- Camera
- Terrain Classification
- Localization
- RAM-Rmax
- Action

Terrain Classification

[Comanicu and Meer, 2002]

- "Off the shelf"
 segmentation of terrain into two areas
- The only parameter given to the segmentation algorithm was to limit the size of the smallest area found

Terrain Classification

[Comanicu and Meer, 2002]

- "Off the shelf"
 segmentation of terrain into two areas
- The only parameter given to the segmentation algorithm was to limit the size of the smallest area found

Task Description

- Navigate to Goal
- Reaching the goal or falling out ends the episode
- If you assume one dynamics model, the variance will be large enough that positioning the robot at the goal is close to impossible

States	12000
Actions	3
Step Cost	-0.1
Out of Bounds	- 1

Cumulative Reward

Average Cumulative Reward

Success Rates

- In the last ten episodes, RAM-Rmax with the cluster information succeeded reaching the goal 96% of the time. With one cluster, it only reach the goal 34% of the time.
- Fitted Q Iteration was unable to reach the goal with or without cluster information in 20 episodes.

Conclusions

- Used a framework that allows us to add prior information in a principled way
- Showed that this framework reduces exploration in natural environments
- Empirically demonstrated that the addition of a single extra cluster can radically improve performance
- More powerful than the simple addition of an extra feature to function approximation methods
- Further reduced the dependency on hand tuning from the previous work resulting in a more automated system

Continuous Domains

[Brunskill et al., 2008]

- Instead of representing the model as a set of discrete statistics, learn a Gaussian
- Use the continuous offset (RAM model) with Fitted Value Iteration to solve

Feature Selection

- Which features are good dynamics indicators?
- We can learn this
- This enables us to incorporate additional sensors, either alone or in combination

Thank You

Citations

- Brunskill, E., Leffer, B. R., Li, L., Littman, M. L., and Roy, N. (2008). CORL: A continuous-state offset-dynamics reinforcement learner. In Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence (UAI-08).
- Leffer, B. R., Littman, M. L., and Edmunds, T. (2007). Efficient reinforcement learning with relocatable action models. In Proceedings of the 22nd Conference on Artificial Intelligence (AAAI-07),
- Li, L., Littman, M. L., and Walsh, T. J. (2008). Knows what it knows: A framework for self-aware learning. In Proceedings of the Twenty-Fifth International Conference on Machine Learning (ICML-08).
- Sherstov, A.A. and Stone, P. (2005). Improving action election in MDP's via knowledge transfer. In Proceedings of the 20th Conference on Artificial Intelligence (AAAI-05)
- Comanicu, D. and Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Machine Intell. (TPAMI-02)