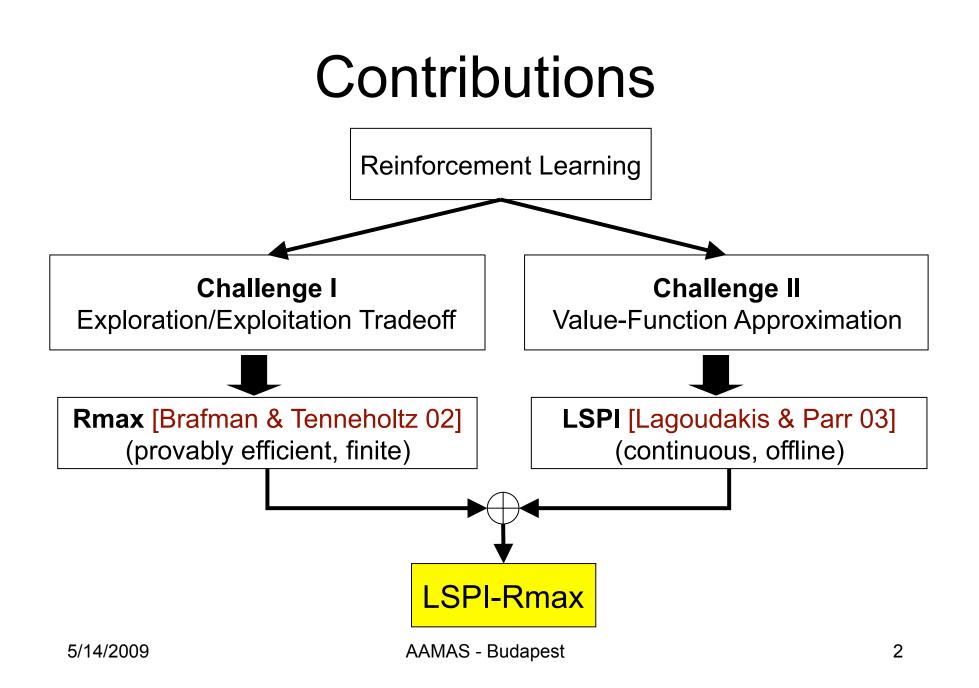
Online Exploration in Least-Squares Policy Iteration

Lihong Li, Michael L. Littman, and Christopher R. Mansley

Rutgers Laboratory for Real-Life Reinforcement Learning (RL³)

5/14/2009

AAMAS - Budapest



Outline

- Introduction
 - LSPI
 - Rmax
- LSPI-Rmax
- Experiments
- Conclusions

Basic Terminology

- Markov decision process
 - States: S
 - Actions: A
 - Reward function: $-1 \le R(s,a) \le 1$
 - Transition probabilities: T(s'|s,a)
 - Discount factor: $0 < \gamma < 1$
- Optimal value function: $Q^*(s,a)$
- Optimal policy: $\pi^*(s) = \arg \max_a Q^*(s, a)$
- Approximate $Q^*(s,a)$

Linear Function Approximation

$$Q(s,a) = \sum_{i=1}^{k} w_i \phi_i(s,a) = w \cdot \phi(s,a)$$

• Features: $\phi_i(s,a)$

- A.k.a. "basis functions", and predefined

- Weights: W_i
 - Measures contributions of ϕ_i to approximating Q^*
- Learning = finding w such that: $w \cdot \phi(s,a) \approx Q^*(s,a)$

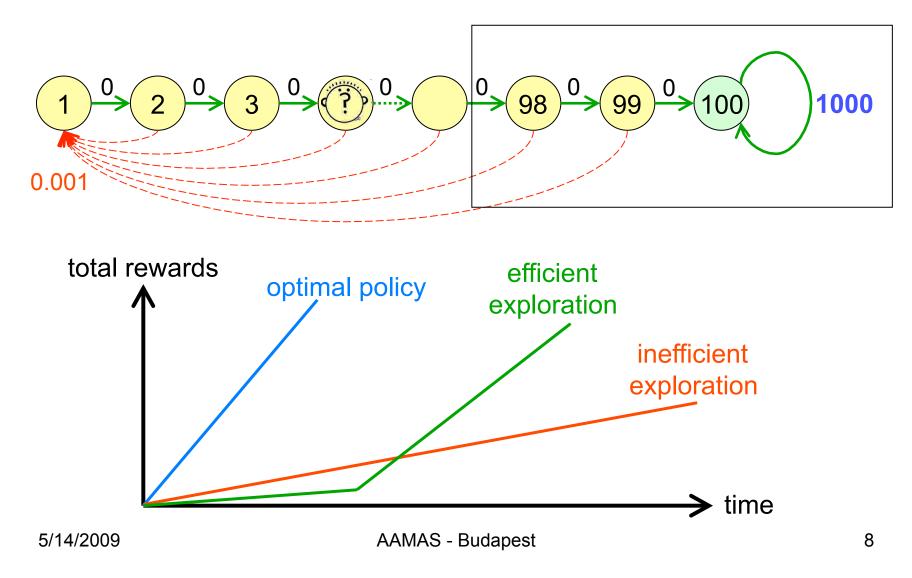
LSPI [Lagoudakis & Parr 03]

$$\begin{array}{c}
\overbrace{x \leftarrow x'} \leftarrow \overbrace{x'(s) = \operatorname{argmax}_{a} w \cdot \phi(s, a)} \\
\hline \\
\text{Given samples: } D = \{(s_{1}, a_{1}, r_{1}, s_{1}^{*}), \dots, (s_{m}, a_{m}, r_{m}, s_{m}^{*})\} \\
\text{Approx. Bellman Eqn.: } w \cdot \phi(s_{i}, a_{i}) \approx r_{i} + \gamma w \cdot \phi(s_{i}^{*}, \pi(s_{i}^{*})), \forall i \\
\text{LSTDQ sets up a least-squares problem} \\
\text{and computes: } w = \mathbf{A}^{-1}\mathbf{b} \\
\mathbf{A} = \sum_{i=1}^{m} \phi(s_{i}, a_{i}) (\phi(s_{i}, a_{i}) - \gamma \phi(s_{i}^{*}, \pi(s_{i}^{*})))^{\mathrm{T}}, \mathbf{b} = \sum_{i=1}^{m} \phi(s_{i}, a_{i})r_{i} \\
\end{array}$$

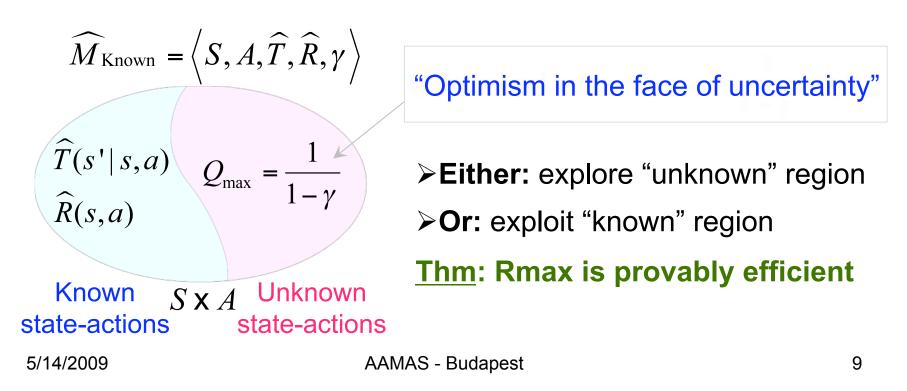
But, LSPI does not specify how to collect samples *D*:
a fundamental challenge in online reinforcement learning
An agent only collects samples in states it visits...
Given samples:
$$D = \{(s_1, a_1, r_1, s_1^\circ), ..., (s_m, a_m, r_m, s_m^\circ)\}$$

Approx. Bellman Eqn.: $w \cdot \phi(s_i, a_i) \approx r_i + \gamma w \cdot \phi(s_i^\circ, \pi(s_i^\circ)), \forall i$
LSTDQ sets up a least-squares problem
and computes: $w = \mathbf{A}^{-1}\mathbf{b}$
 $\mathbf{A} = \sum_{i=1}^{m} \phi(s_i, a_i) (\phi(s_i, a_i) - \gamma \phi(s_i^\circ, \pi(s_i^\circ)))^{\mathrm{T}}, \mathbf{b} = \sum_{i=1}^{m} \phi(s_i, a_i) r_i$

Exploration/Exploitation Tradeoff

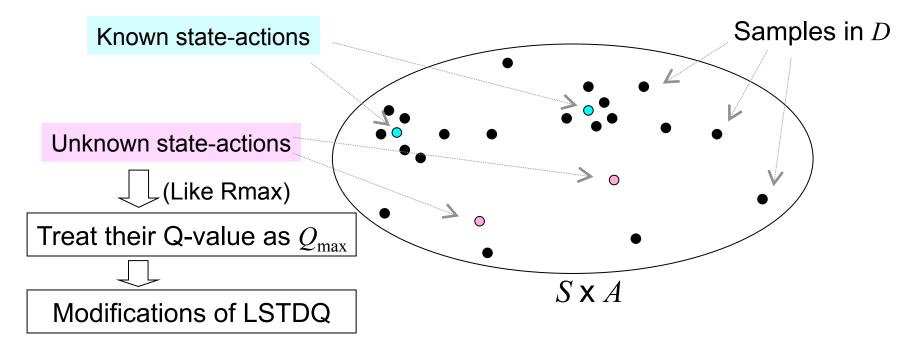


- Rmax is for finite-state, finite-action MDPs
- Learns T and R by counting/averaging
- In s_t , takes optimal action in \widehat{M}_{Known}



LSPI-Rmax

- Similar to LSPI
- But distinguishes known/unknown (*s*,*a*):



LSTDQ-Rmax

Given samples: $D = \{(s_1, a_1, r_1, s_1^{,i}), \dots, (s_m, a_m, r_m, s_m^{,i})\}$ Treat $Q(s,a) = \frac{1}{1-\gamma}$ if (s,a) is unknown: *E.g.*, if (s_i, a_i) is unknown, change (s_i, a_i, r_i, s_i) to $(s_i, a_i, Q_{\max}, \Box)$ and $A = \cdots + \phi(s_i, a_i)\phi(s_i, a_i)^{\mathrm{T}} + \cdots$ $b = \cdots + \phi(s_i, a_i) Q_{\max} + \cdots$

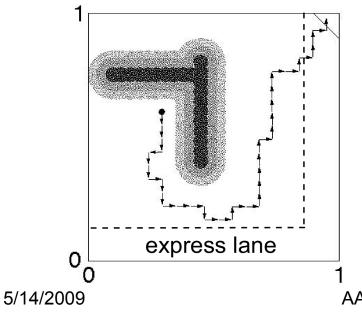
Similarly for $(s_i^{,}, a)$.

LSPI-Rmax for Online RL

- D = empty set
- Initialize w
- for t = 1, 2, 3, ...
 - Take greedy action: $a_t = \operatorname{argmax}_a w \cdot \phi(s_t, a)$
 - $-D = D \cup \{(s_t, a_t, r_t, s_{t+1})\}$
 - Run LSPI using LSTDQ-Rmax

Experiments

- Problems
 - MountainCar
 - Bicycle
 - Continuous Combination Lock
 - ExpressWorld (a variant of PuddleWorld)



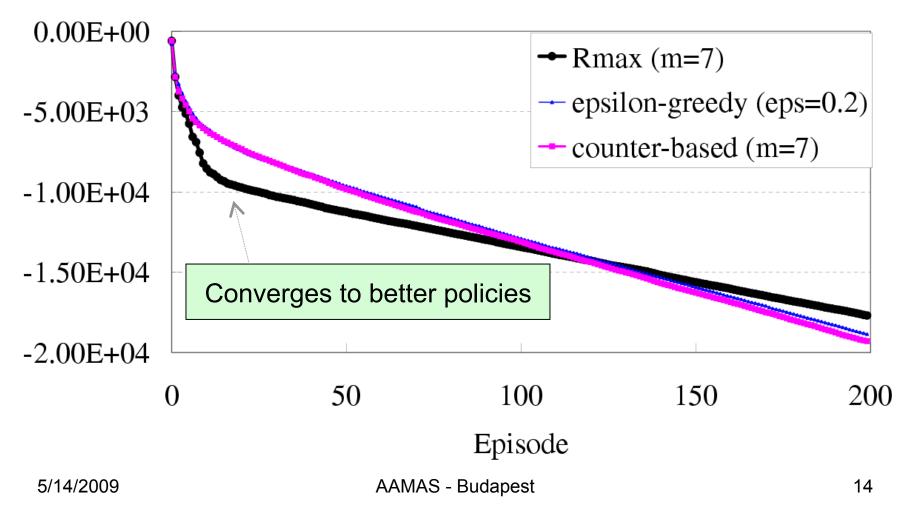
Four actions Stochastic transitions Reward:

-1 reward per step

-0.5 reward per step in "expresslane" penalty for stepping into puddles Random start states

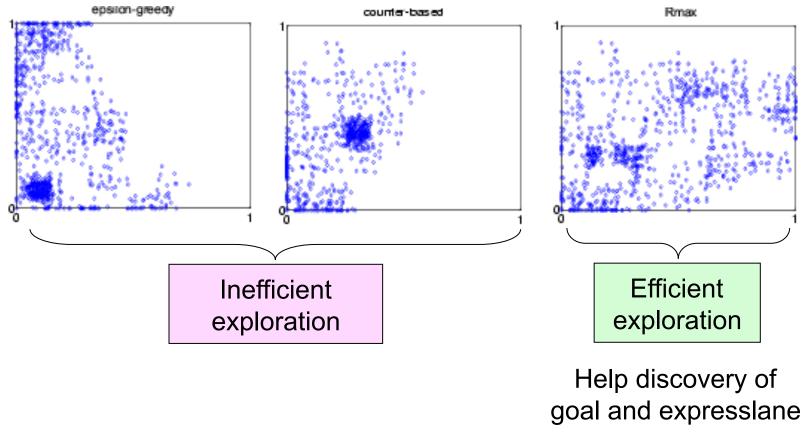
Various Exploration Rules with LSPI

Cumulative Reward in ExpressWorld

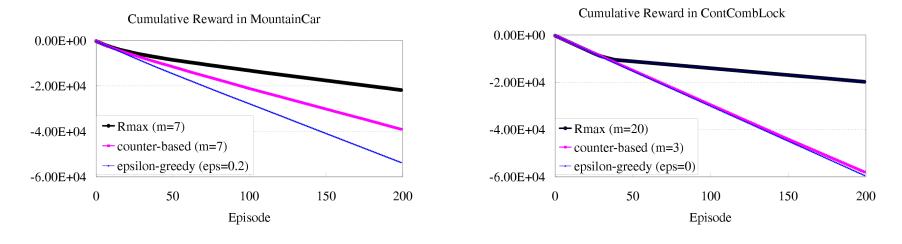


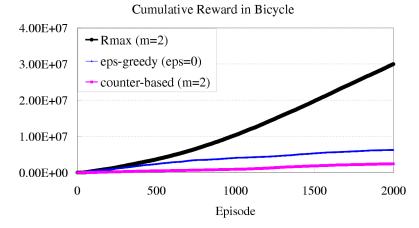
A Closer Look

States visited in the first 3 episodes:



More Experiments

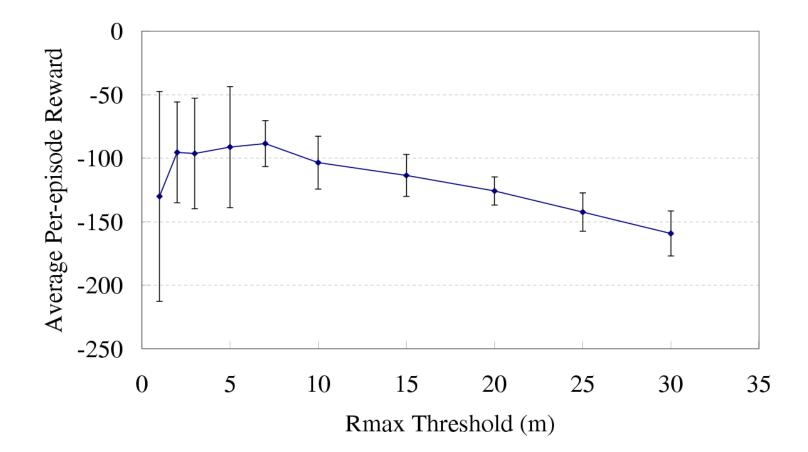




5/14/2009

AAMAS - Budapest

Effect of Rmax Threshold



Conclusions

- We proposed LSPI-Rmax
 - LSPI + Rmax
 - encourages active exploration
 - with linear function approximation
- Future directions
 - Similar idea applied to Gaussian process RL
 - Comparison to model-based RL

Where are features from?

- Hand-crafted features
 - expert knowledge required
 - expensive and error prone
- Generic features
 - RBF, CMAC, polynomial, etc.
 - may not always work well
- Automatic feature selection using
 - Bellman error [Parr et al. 07]
 - spectral graph analysis [Mahadevan & Maggioni 07]
 - TD approximation [Li & Williams & Balakrishnan 09]
 - L₁ Regularization for LSPI [Kolter & Ng 09]

LSPI-Rmax vs. MBRL

- Model-based RL (e.g., Rmax)
 - Learns an MDP model
 - Computes policy with the approximate model
 - Can use function approx. in model learning
 - Rmax w/ many compact representations [Li 09]
- LSPI-Rmax is model-free RL
 - Avoids expensive "planning" step
 - Has weaker theoretical guarantees