
Sample-based Planning for Continuous Action

Markov Decision Processes

Ari Weinstein aweinst@rutgers.edu

Chris Mansley cmansley@cs.rutgers.edu

Michael Littman mlittman@cs.rutgers.edu

Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854 USA

Abstract

In this paper, we present a new algo-
rithm that integrates recent advances in
solving continuous bandit problems with
sample-based rollout methods for planning in
Markov Decision Processes (MDPs). Our al-
gorithm, Hierarchical Optimistic Optimiza-
tion applied to Trees (HOOT) addresses
planning in continuous action MDPs, direct-
ing the exploration of the search tree using in-
sights from recent bandit research. Empirical
results are given that show that the perfor-
mance of our algorithm meets or exceeds that
of a similar discrete action planner by elimi-
nating the problem of manual discretization
of the action space.

1. Introduction

At present, most MDP planning algorithms are re-
stricted to settings where the action space is finite.
When used in domains where actions are continuous,
a natural approach is to coarsely discretize the space
and then plan in that modified space. The risk of this
approach is that the chosen action discretization may
not be appropriate for the domain and therefore im-
pact the quality of the solution found. In this paper,
we propose a planning algorithm that adaptively par-
titions the action space and enables it to avoid the pit-
falls encountered in algorithms that use a fixed action
discretization. The result is an algorithm that focuses
quickly on regions of the action space with high value.

Submitted to the ICML 2010 Workshop on Reinforcement
Learning and Search in Very Large Spaces.

2. Background

We describe some of the formal background on which
our algorithm depends.

2.1. Markov Decision Processes

An MDP M is described by a five-tuple 〈S,A, T,R, γ〉,
where S ⊆ R

N is the N -dimensional state space,
A ⊆ R

D is the D-dimensional action space, T is the
transition function, with T (s, a, s′) denoting the prob-
ability of reaching s′ from s by taking action a, R is
the reward function with R(s, a) denoting the expected
reward from taking action a in state s and γ ∈ [0, 1)
is the discount factor. A deterministic policy π is a
mapping π : S → A from states to actions. The value
of a policy, V π(s), is defined as the expected sum of
discounted rewards starting at state s and following
policy π. The discounted return from time t = 0 to
t = T for a horizon T is

∑T

t=0 γtrt, where rt is the
reward obtained at step t. The optimal policy, π∗, is
the policy that maximizes V π(s),∀s ∈ S.

2.2. Sample-Based Planners

Sparse sampling (Kearns et al., 1999) is a sample-
based planner that produces provably near-optimal
policies but has costs exponential in the planning
depth. To plan, a tree is built with a branching fac-
tor at least |A| and with height equal to the planning
depth. In practice, due to this cost, the depth to which
Sparse Sampling can plan is quite shallow..

Rollout planners, another class of sample-based plan-
ner, do not suffer from computational costs as a func-
tion of the planning depth as acutely as sparse sam-
pling. This property is important when planning must
be carried out to a greater planning depth with re-
stricted computational resources. In these methods,
planning is done by conducting an entire rollout from
the query state with length equal to the planning
depth. The information gained from this trajectory

Sample-Based Planning for Continuous Action Markov Decision Processes

can be used to refine the policy and then the process
is repeated. The simplest example of this style of algo-
rithm is Monte-Carlo planning (Kocsis & Szepesvári,
2006).

2.3. UCT

The Upper Confidence Bounds applied to Trees (UCT)
algorithm was proposed as an instance of Monte-Carlo
planning (Kocsis & Szepesvári, 2006). UCT uses a
modified version of the UCB1 (Auer et al., 2002) ban-
dit algorithm for action-selection in the search tree.
The policy for the bandit component in UCT is de-
fined as taking the action

argmax
a∈A

R̂(a) + 2Cp

√

ln(n)/na,

where R̂(a) is the sample mean of the reward observed
from taking a, Cp is some constant greater than 0, and
na is the number of times a has been taken.

One of these bandit agents is placed at each state and
depth of the rollout. When a trajectory encounters
a particular state and depth, each action is treated
as a bandit arm, and the discounted return resulting
from that action is treated as the reward by the bandit
algorithm. Since the bandit component plans over a
discrete number of actions, UCT is restricted to the
discrete action setting.

3. Sample-Based Planning in

Continuous Action MDPs

Building on UCT, which takes actions during rollouts
according to a discrete action bandit algorithm, a nat-
ural extension to this approach is the application of
a continuous action bandit algorithm to rollout plan-
ning. We discuss an existing bandit algorithm and
present our approach to integrating it into a rollout
planner.

3.1. HOO

The Hierarchical Optimistic Optimiza-
tion (Bubeck et al., 2009) or HOO strategy is a
bandit algorithm that exploits a set of actions that
forms a general topological space. This assumption
allows HOO to be applied directly to many domains
that traditional bandit algorithms such as UCB
cannot, including those with a continuum of actions.

HOO operates by developing a piecewise decomposi-
tion of the action space, which is described as a tree.
When queried for an action to take, the algorithm
starts at the root and continues to the leaves by taking
a path according to the maximal score between the two

children, called the B-value. At a leaf node, an action
is sampled from any part of the range that the node
represents. The node is then subdivided by adding two
children. The process is repeated each time HOO is
queried for an action-selection.

The values computed for each node are a count, reward
estimation, and reward bias, which are all combined to
form the B-value. Let the pair (h, i) refer to the ith
node at depth h, C(h, i) be the set consisting of the
node and its subtree, and let

Nh,i(n) =

n
∑

t=1

I{(Ht,It)∈C(h,i)}

be the number of times node (h, i) has been visited up
to time t, where (Ht, It) is the node which was split at
t.

Let R̂h,i(n) be the reward estimate of node (h, i) de-
fined as

R̂h,i(n) =
1

Nh,i(n)

n
∑

t=1

I{(Ht,It)∈C(h,i)}rt.

The upper bound on the estimate of the reward is

Uh,i(n) = R̂h,i(n) +

√

2 lnn

Nh,i(n)
+ v1ρ

h

for v1 > 0 and 0 < ρ < 1. For nodes that have not yet
been sampled, R̂h,i(n) = Uh,i(n) = ∞.

The B-value of a node is defined as

Bh,i(n) =

min {Uh,i(n),max {Bh+1,2i−1(n), Bh+1,2i(n)}}

where for node (h, i), nodes (h+1, 2i−1) and (h+1, 2i)
are its children.

3.2. HOOT

We introduce Hierarchical Optimistic Optimization
applied to Trees (HOOT), which integrates the HOO
algorithm into the rollout planning structure. The use
of HOO for action-selection allows the algorithm to
overcome the discrete action limitation of UCT.

Our algorithm can be described in relation to UCT
as follows. The action-selection mechanism of UCT
operates by placing a UCB agent at each state and
depth encountered during the rollout process. Instead
of a discrete action bandit algorithm, HOOT places
a continuous action bandit algorithm, HOO, at each
state and depth in the rollout tree. Aside from this
modification, all other aspects of the algorithm are the
same.

Sample-Based Planning for Continuous Action Markov Decision Processes

4. Experiments

We compared UCT with discretized actions to HOOT
in a few continuous action MDPs. Since both HOOT
and UCT require discrete states, all domains have 20
divisions per state dimension. To keep the implemen-
tation as direct and simple as possible, at each step
all previous planning was discarded and started anew.
UCT 5, UCT 10, and UCT 20 refer to UCT where
there are 5, 10, and 20 discretizations across each ac-
tion dimension, respectively. After planning, the ac-
tion taken by UCT was that with the highest mean
return at the root. In HOOT, the action was taken by
greedily following branches according to mean reward
as opposed to B-value.

4.1. Double Integrator

The double integrator (Santamaŕıa et al., 1998) do-
main models the motion of an object along a surface.
The dynamics of the system can be represented as a
discrete time linear system as follows:

xt+1 = Axt + Bu

where A =

[

1 0
∆t 1

]

, B =

[

∆t
0

]

.

The reward signal is quadratic and is defined as

−
1

D

(

xt
T Qxt + uT Ru

)

where Q =

[

0 0
0 1

]

, R = [1].

This system can be generalized to D dimensional sys-
tems by extending the A, B, Q and R matrices to cre-
ate D position dimensions and D velocity dimensions.
We call this extension to the domain the D-double in-
tegrator.

In both experiments in this domain, 2048 queries were
allowed to the generative model per step. In Figure 1,
the performance of HOOT and UCT is plotted for
D = 1 as the number of discretized actions used by
UCT varies. Since HOOT does not require actions
to be discretized in advance, its performance is con-
stant with respect to this variable. All uniform action
discretizations used by UCT resulted in performance
worse than HOOT.

Figure 2 shows the performance of HOOT and UCT
5, 10 and 20 in the D-double integrator. As the num-
ber of action dimensions increased, the performance
of UCT degraded more rapidly than that of HOOT.
This outcome can be attributed to the fact that the
size of the discretized action set increases exponen-
tially with D. For example, in 4-Double Integrator,

 165

 170

 175

 180

 185

 190

 195

 0 10 20 30 40 50

T
ot

al
 R

ew
ar

d

Number of Discrete Actions

D-Double Integrator - 1D

HOOT
UCT

Figure 1. Performance of HOOT and UCT in the double

integrator domain as the number of discretized actions used

by UCT varies.

UCT 20 must search over a space of 160000 discrete
actions each step, which is far greater than the number
of samples allowed from the generative model. Since
the HOO component prunes regions of that tree that
appear to yield poor returns, HOOT can quickly focus
exploration in regions of the action space where the
optimal action is likely to lie and suffers less from the
expansion of the dimension of the action space.

4.2. D-Link Swimmer

In the D-link swimmer domain (Tassa et al., 2007), a
simulated swimmer is made up of a chain of D links
where D− 1 joint torques are applied between links in
order to propel the swimmer to a goal point. The total
size of the state space is 2D+4-dimensional. As in the
D-double integrator, we tested UCT 5, 10, and 20. In
this domain, 8192 queries to the generative model were
allowed per step. For all values of D tested, UCT 10
and 20 were not statistically different from that of a
random policy, so of these only the performance of the
random policy is plotted for reference.

Figure 3 shows the performance of HOOT, UCT 5,
and the random policy. As in the D-double integrator,
the performance of UCT 5 is competitve with HOOT
while the number of action dimensions is small. How-
ever, once the number of action dimensions grows to
four or larger, the performance of UCT 5 is not dif-
ferent from that of a random policy with statistical
significance. HOOT, on the other hand continues to
perform well with even the largest number of action
dimensions tested.

Sample-Based Planning for Continuous Action Markov Decision Processes

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 3 4

T
ot

al
 R

ew
ar

d

Number of Action Dimensions

D-Double Integrator

HOOT
UCT 5

UCT 10
UCT 20

Figure 2. Performance of HOOT and UCT in the D-double

integrator domain as the number of action dimensions in-

creases.

5. Conclusion and Discussion

This paper introduces HOOT, an algorithm for plan-
ning in continuous action MDPs. The main benefit
of using the proposed algorithm is its ability to adap-
tively partition the action space and focus exploration
on regions in the action space where the highest re-
turns are likely to lie. This removes one parameter
(the discretization of the action space) that must be
tuned in planning algorithms that assume a discrete
state space. In comparison, the choice of action dis-
cretization used by UCT must balance the number of
actions used. In many domains, too few actions makes
a good policy inexpressible, while too many actions
makes the space too large to search effectively, espe-
cially because there is no generalization over actions in
UCT. HOOT, on the other hand, does generalize over
actions.

Finally, it seems the greatest benefits of using HOOT
instead of an approach that requires discretization
stems from its behavior in high dimensional action
spaces. Although the regret of UCB is O(log t), the
cost is also linear in the number of discrete actions
k. This cost is generally not considered significant be-
cause it is assumed t is much greater than k. Since
UCT builds on UCB, this issue arises in the plan-
ning setting as well. In domains with high-dimensional
action spaces, this dependency on the exponentially
growing number of actions becomes a significant fac-
tor. HOO, on the other hand, does not discretize ac-
tions and so has no k. It also has regret independent
of the number of action dimensions D under certain
assumptions (Bubeck et al., 2009). This property mit-

-5100

-5000

-4900

-4800

-4700

-4600

-4500

-4400

 2 3 4 5

T
ot

al
 R

ew
ar

d

Number of Action Dimensions

D-Link Swimmer

HOOT
UCT 5

Random

Figure 3. Performance of HOOT and UCT in the D-link

swimmer domain as the number of action dimensions in-

creases.

igates the combinatorial explosion that arises in plan-
ning in domains with high dimensional action spaces.

Acknowledgments

The authors thank Ali Nouri for his fundamental in-
sight into the relationship between HOO and UCT.
This research was supported in part by National Sci-
ence Foundation DGE-0549115.

References

Auer, P., Fischer, P., and Cesa-Bianchi, N. Finite-time
analysis of the multi-armed bandit problem. Machine
Learning, 47, 2002.

Bubeck, S., Munos, R., Stoltz, G., and Szepesvári, C. On-
line optimization in X-armed bandits. In Advances in
Neural Information Processing Systems 23. 2009.

Kearns, M., Mansour, S., and Ng, A. A sparse sampling
algorithm for near-optimal planning in large Markov de-
cision processes. In IJCAI, 1999.

Kocsis, L. and Szepesvári, C. Bandit based Monte-Carlo
planning. In Machine Learning: ECML 2006, 2006.

Santamaŕıa, Juan C., Sutton, R., and Ram, Ashwin. Ex-
periments with reinforcement learning in problems with
continuous state and action spaces. In Adaptive Behav-
ior 6, 1998.

Tassa, Yuval, Erez, Tom, and Smart, William D. Receding
horizon differential dynamic programming. In Advances
in Neural Information Processing Systems 21. 2007.

