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 Dynamics of the agent are 

learned

 Planning is done with 

respect to the model

 Assumes each state may 

have a different dynamics 

model



Exploration vs. Exploitation
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Our Algorithm

 In Leffler et al 2007, we defined such an algorithm

 This work extends that paper by

 Empirically demonstrating the significance of adding a single 

extra model in this framework

 Fully integrating autonomy into the system, removing the need 

for hand tuning

 Comparing against other algorithms for generalization in RL

 Enabling further extensions



Additional Assumptions

 Dynamics Indicator

 There exists a function that indicates what area of the state 

space has similar dynamics

 This function is often simply a single feature
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RAM-Rmax
[Leffer et al., 2007]

 State Space

 Observe Transitions

 Assign transition statistics 

to the clusters

 Use these statistics to 

plan



System Architecture

 Camera

 Terrain Classification

 Localization

 RAM-Rmax

 Action
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Task Description

 Navigate to Goal

 Reaching the goal or 

falling out ends the 

episode

 If you assume one 

dynamics model, the 

variance will be large 

enough that positioning 

the robot at the goal is 

close to impossible 

States 12000

Actions 3

Step Cost -0.1

Out of Bounds -1



Cumulative Reward



Success Rates

 In the last ten episodes, RAM-Rmax with the cluster 

information succeeded reaching the goal 96% of the time. 

With one cluster, it only reach the goal 34% of the time.

 Fitted Q Iteration was unable to reach the goal with or 

without cluster information in 20 episodes.



Conclusions

 Used a framework that allows us to add prior 

information in a principled way

 Showed that this framework reduces exploration in 

natural environments

 Empirically demonstrated that the addition of a single 

extra cluster can radically improve performance

 More powerful than the simple addition of an extra 

feature to function approximation methods

 Further reduced the dependency on hand tuning from the 

previous work resulting in a more automated system



Continuous Domains 
[Brunskill et al., 2008]

 Instead of representing the model as a set of discrete 

statistics, learn a Gaussian

 Use the continuous offset (RAM model) with Fitted Value 

Iteration to solve



Feature Selection 
[Li et al., 2008]

 Which features are good dynamics indicators?

 We can learn this

 This enables us to incorporate additional sensors, either 

alone or in combination



Thank You
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